Skip to main content
Log in

PAS Kinase Is a Nutrient and Energy Sensor in Hypothalamic Areas Required for the Normal Function of AMPK and mTOR/S6K1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The complications caused by overweight, obesity and type 2 diabetes are one of the main problems that increase morbidity and mortality in developed countries. Hypothalamic metabolic sensors play an important role in the control of feeding and energy homeostasis. PAS kinase (PASK) is a nutrient sensor proposed as a regulator of glucose metabolism and cellular energy. The role of PASK might be similar to other known metabolic sensors, such as AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR). PASK-deficient mice resist diet-induced obesity. We have recently reported that AMPK and mTOR/S6K1 pathways are regulated in the ventromedial and lateral hypothalamus in response to nutritional states, being modulated by anorexigenic glucagon-like peptide-1 (GLP-1)/exendin-4 in lean and obese rats. We identified PASK in hypothalamic areas, and its expression was regulated under fasting/re-feeding conditions and modulated by exendin-4. Furthermore, PASK-deficient mice have an impaired activation response of AMPK and mTOR/S6K1 pathways. Thus, hypothalamic AMPK and S6K1 were highly activated under fasted/re-fed conditions. Additionally, in this study, we have observed that the exendin-4 regulatory effect in the activity of metabolic sensors was lost in PASK-deficient mice, and the anorexigenic properties of exendin-4 were significantly reduced, suggesting that PASK could be a mediator in the GLP-1 signalling pathway. Our data indicated that the PASK function could be critical for preserving the nutrient effect on AMPK and mTOR/S6K1 pathways and maintain the regulatory role of exendin-4 in food intake. Some of the antidiabetogenic effects of exendin-4 might be modulated through these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hao HX, Rutter J (2008) The role of PAS kinase in regulating energy metabolism. IUBMB Life 60(4):204–209

    Article  PubMed  CAS  Google Scholar 

  2. Schlafli P, Borter E, Spielmann P, Wenger RH (2009) The PAS-domain kinase PASKIN: a new sensor in energy homeostasis. Cell Mol Life Sci 66(5):876–883

    Article  PubMed  CAS  Google Scholar 

  3. MacDonald PE, Rorsman P (2011) Per-arnt-sim (PAS) domain kinase (PASK) as a regulator of glucagon secretion. Diabetologia 54(4):719–721

    Article  PubMed  CAS  Google Scholar 

  4. Smith TL, Rutter J (2007) Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. Mol Cell 26(4):491–499

    Article  PubMed  CAS  Google Scholar 

  5. Grose JH, Smith TL, Sabic H, Rutter J (2007) Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling. Embo J 26(23):4824–4830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Katschinski DM, Marti HH, Wagner KF, Shibata J, Eckhardt K, Martin F, Depping R, Paasch U, Gassmann M, Ledermann B, Desbaillets I, Wenger RH (2003) Targeted disruption of the mouse PAS domain serine/threonine kinase PASKIN. Mol Cell Biol 23(19):6780–6789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Hao HX, Cardon CM, Swiatek W, Cooksey RC, Smith TL, Wilde J, Boudina S, Abel ED, McClain DA, Rutter J (2007) PAS kinase is required for normal cellular energy balance. Proc Natl Acad Sci U S A 104(39):15466–15471

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. da Silva XG, Farhan H, Kim H, Caxaria S, Johnson P, Hughes S, Bugliani M, Marselli L, Marchetti P, Birzele F, Sun G, Scharfmann R, Rutter J, Siniakowicz K, Weir G, Parker H, Reimann F, Gribble FM, Rutter GA (2011) Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia 54(4):819–827

    Article  Google Scholar 

  9. Rutter GA, Da Silva XG, Leclerc I (2003) Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J 375(Pt 1):1–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  PubMed  CAS  Google Scholar 

  11. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    Article  PubMed  CAS  Google Scholar 

  12. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071–14077

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Alessi DR, Pearce LR, Garcia-Martinez JM (2009) New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2(67):pe27

    PubMed  Google Scholar 

  14. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Proud CG (2002) Regulation of mammalian translation factors by nutrients. Eur J Biochem 269(22):5338–5349

    Article  PubMed  CAS  Google Scholar 

  16. Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15(7):807–826

    Article  PubMed  CAS  Google Scholar 

  17. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  PubMed  CAS  Google Scholar 

  18. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Zheng M, Wang YH, Wu XN, Wu SQ, Lu BJ, Dong MQ, Zhang H, Sun P, Lin SC, Guan KL, Han J (2011) Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 13(3):263–272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB (2012) p70S6 kinase phosphorylates AMPK on serine 491 to mediate Leptin’s effect on food intake. Cell Metab 16(1):104–112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ, Stuck BJ, Kahn BB (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428(6982):569–574

    Article  PubMed  CAS  Google Scholar 

  22. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312(5775):927–930

    Article  PubMed  CAS  Google Scholar 

  23. Hurtado-Carneiro V, Roncero I, Blazquez E, Alvarez E, Sanz C (2013) PAS kinase as a nutrient sensor in neuroblastoma and hypothalamic cells required for the normal expression and activity of other cellular nutrient and energy sensors. Mol Neurobiol 48(3):904–920

    Article  PubMed  CAS  Google Scholar 

  24. Rodriquez de Fonseca F, Navarro M, Alvarez E, Roncero I, Chowen JA, Maestre O, Gomez R, Munoz RM, Eng J, Blazquez E (2000) Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism 49(6):709–717

    Article  PubMed  CAS  Google Scholar 

  25. Hurtado-Carneiro V, Sanz C, Roncero I, Vazquez P, Blazquez E, Alvarez E (2012) Glucagon-like peptide 1 (GLP-1) can reverse AMP-activated protein kinase (AMPK) and S6 kinase (P70S6K) activities induced by fluctuations in glucose levels in hypothalamic areas involved in feeding behaviour. Mol Neurobiol 45(2):348–361

    Article  PubMed  CAS  Google Scholar 

  26. Paxinos G, Watson C (2004) The rat brain in stereotaxic coordinates. Elsevier, New York

    Google Scholar 

  27. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates. Elsevier, San Diego

    Google Scholar 

  28. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  PubMed  CAS  Google Scholar 

  29. Navarro M, Rodriquez de Fonseca F, Alvarez E, Chowen JA, Zueco JA, Gomez R, Eng J, Blazquez E (1996) Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT-2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonists as an inhibitory signal for food and water intake. J Neurochem 67(5):1982–1991

    Article  PubMed  CAS  Google Scholar 

  30. da Silva XG, Rutter J, Rutter GA (2004) Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proc Natl Acad Sci U S A 101(22):8319–8324

    Article  Google Scholar 

  31. Borter E, Niessen M, Zuellig R, Spinas GA, Spielmann P, Camenisch G, Wenger RH (2007) Glucose-stimulated insulin production in mice deficient for the PAS kinase PASKIN. Diabetes 56(1):113–117

    Article  PubMed  CAS  Google Scholar 

  32. Dunn-Meynell AA, Routh VH, Kang L, Gaspers L, Levin BE (2002) Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes 51(7):2056–2065

    Article  PubMed  CAS  Google Scholar 

  33. Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS, Lee IK, Viollet B, Youn JH, Lee HK, Lee KU (2004) Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10(7):727–733

    Article  PubMed  CAS  Google Scholar 

  34. Cota D, Matter EK, Woods SC, Seeley RJ (2008) The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci 28(28):7202–7208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116(7):1776–1783

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Reed AS, Unger EK, Olofsson LE, Piper ML, Myers MG Jr, Xu AW (2010) Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes 59(4):894–906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Villanueva EC, Munzberg H, Cota D, Leshan RL, Kopp K, Ishida-Takahashi R, Jones JC, Fingar DC, Seeley RJ, Myers MG Jr (2009) Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology 150(10):4541–4551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Mori H, Inoki K, Munzberg H, Opland D, Faouzi M, Villanueva EC, Ikenoue T, Kwiatkowski D, MacDougald OA, Myers MG Jr, Guan KL (2009) Critical role for hypothalamic mTOR activity in energy balance. Cell Metab 9(4):362–374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Martins L, Fernandez-Mallo D, Novelle MG, Vazquez MJ, Tena-Sempere M, Nogueiras R, Lopez M, Dieguez C (2012) Hypothalamic mTOR signaling mediates the orexigenic action of ghrelin. PLoS One 7(10):e46923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279(13):12005–12008

    Article  PubMed  CAS  Google Scholar 

  41. Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, Williams LM, Hawley SA, Hardie DG, Grossman AB, Korbonits M (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280(26):25196–25201

    Article  PubMed  CAS  Google Scholar 

  42. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968

    Article  PubMed  CAS  Google Scholar 

  43. Semplici F, Vaxillaire M, Fogarty S, Semache M, Bonnefond A, Fontes G, Philippe J, Meur G, Diraison F, Sessions RB, Rutter J, Poitout V, Froguel P, Rutter GA (2011) Human mutation within Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) causes basal insulin hypersecretion. J Biol Chem 286(51):44005–44014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F, Kahn BB (2006) Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J Biol Chem 281(28):18933–18941

    Article  PubMed  CAS  Google Scholar 

  45. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF (2004) Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279(2):1070–1079

    Article  PubMed  CAS  Google Scholar 

  46. Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S (2003) The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111(1):91–98

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J, Beauloye C, Foretz M, Andreelli F, Ventura-Clapier R, Bertrand L (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci 14:19–44

    Article  CAS  Google Scholar 

  48. Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117(8):2325–2336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Dzamko N, van Denderen BJ, Hevener AL, Jorgensen SB, Honeyman J, Galic S, Chen ZP, Watt MJ, Campbell DJ, Steinberg GR, Kemp BE (2010) AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J Biol Chem 285(1):115–122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Xue B, Pulinilkunnil T, Murano I, Bence KK, He H, Minokoshi Y, Asakura K, Lee A, Haj F, Furukawa N, Catalano KJ, Delibegovic M, Balschi JA, Cinti S, Neel BG, Kahn BB (2009) Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol Cell Biol 29(16):4563–4573

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Spain’s Ministry of Science and Innovation—MICINN (SAF2006-0475 and SAF2009-11297), the Complutense University-Banco Santander Funding Programme for the Creation and Consolidation of Research Teams (GR58/08, GR35/10A, GR35/10B and GR42/10), Mutua Madrileña Medical Research Foundation and the IODURE project, and the CIBER for Diabetes and Associated Metabolic Disorders (CIBERDEM) of the Carlos III Health Institute (ISCIII) (Ministry of Science and Innovation). We wish to thank Marketa Zemanova for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sanz.

Additional information

Carmen Sanz and Elvira Alvarez contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

(DOC 61 kb)

Online resource 2

Effects of PASK deficiency on the expression of several genes in the VMH and LH. Quantitative real-time PCR was used to analyze the expression of several genes as shown (Online resource 1). The mRNA levels were quantified in VMH and LH from fasted C57Bl/6 wild-type and PASK knockout mice in the presence or absence of exendin-4. The bars represent the ratios respect to β-actin of the mRNA levels of the different genes. The value obtained in VMH from wild-type mice (WT) treated with a vehicle without exendin-4 was taken as 1. Results are means ± SEM; n=3-4 animals per condition. *P<0.05, **P<0.01 WT vs. Pask; #P<0.05 vehicle vs. exendin-4; †P<0.05, ††P<0.01 VMH vs. LH. (GIF 39 kb)

High resolution image (EPS 24589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurtado-Carneiro, V., Roncero, I., Egger, S.S. et al. PAS Kinase Is a Nutrient and Energy Sensor in Hypothalamic Areas Required for the Normal Function of AMPK and mTOR/S6K1. Mol Neurobiol 50, 314–326 (2014). https://doi.org/10.1007/s12035-013-8630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8630-4

Keywords

Navigation