Skip to main content
Log in

The Antidepressant Fluoxetine Mobilizes Vesicles to the Recycling Pool of Rat Hippocampal Synapses During High Activity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 13 March 2017

Abstract

Effects of the antidepressant fluoxetine in therapeutic concentration on stimulation-dependent synaptic vesicle recycling were examined in cultured rat hippocampal neurons using fluorescence microscopy. Short-term administration of fluoxetine neither inhibited exocytosis nor endocytosis of RRP vesicular membranes. On the contrary, acute application of the drug markedly increased the size of the recycling pool of hippocampal synapses. This increase in recycling pool size was corroborated using the styryl dye FM 1-43, antibody staining with αSyt1-CypHer™5E and overexpression of synapto-pHluorin, and was accompanied by an increase in the frequency of miniature postsynaptic currents. Analysis of axonal transport and fluorescence recovery after photobleaching excluded vesicles originating from the synapse-spanning superpool as a source, indicating that these new release-competent vesicles derived from the resting pool. Super resolution microscopy and ultrastructural analysis by electron microscopy revealed that short-term incubation with fluoxetine had no influence on the number of active synapses and synaptic morphology compared to controls. These observations support the idea that therapeutic concentrations of fluoxetine enhance the recycling vesicle pool size and thus the recovery of neurotransmission from exhausting stimuli. The change in the recycling pool size is consistent with the plasticity hypothesis of the pathogenesis of major depressive disorder as stabilization of the vesicle recycling might be responsible for neural outgrowth and plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olfson M, Marcus SC, Druss B, Elinson L, Tanielian T, Pincus HA (2002) National trends in the outpatient treatment of depression. JAMA 287(2):203–209

    Article  PubMed  Google Scholar 

  2. Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7(2):137–151. doi:10.1038/nrn1846

    Article  CAS  PubMed  Google Scholar 

  3. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122(5):509–522

    Article  CAS  PubMed  Google Scholar 

  4. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338(6103):68–72. doi:10.1126/science.1222939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kornhuber J, Retz W, Riederer P (1995) Slow accumulation of psychotropic substances in the human brain. Relationship to therapeutic latency of neuroleptic and antidepressant drugs? J Neural Transm Suppl 46:315–323

    CAS  PubMed  Google Scholar 

  6. Karson CN, Newton JE, Livingston R, Jolly JB, Cooper TB, Sprigg J, Komoroski RA (1993) Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 5(3):322–329

    Article  CAS  PubMed  Google Scholar 

  7. Trapp S, Rosania GR, Horobin RW, Kornhuber J (2008) Quantitative modeling of selective lysosomal targeting for drug design. Eur Biophys J 37(8):1317–1328. doi:10.1007/s00249-008-0338-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colicos MA, Syed NI (2006) Neuronal networks and synaptic plasticity: understanding complex system dynamics by interfacing neurons with silicon technologies. J Exp Biol 209(Pt 12):2312–2319. doi:10.1242/jeb.02163

    Article  PubMed  Google Scholar 

  9. Kavalali ET, Klingauf J, Tsien RW (1999) Activity-dependent regulation of synaptic clustering in a hippocampal culture system. Proc Natl Acad Sci U S A 96(22):12893–12900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ratnayaka A, Marra V, Bush D, Burden JJ, Branco T, Staras K (2012) Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons. J Physiol 590(Pt 7):1585–1597. doi:10.1113/jphysiol.2011.226688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32(4):673–682

    Article  CAS  PubMed  Google Scholar 

  12. Matz J, Gilyan A, Kolar A, McCarvill T, Krueger SR (2010) Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release. Proc Natl Acad Sci U S A 107(19):8836–8841. doi:10.1073/pnas.0906087107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang SJ, Su CF, Kuo YH (2003) Fluoxetine depresses glutamate exocytosis in the rat cerebrocortical nerve terminals (synaptosomes) via inhibition of P/Q-type Ca2+ channels. Synapse 48(4):170–177. doi:10.1002/syn.10200

    Article  CAS  PubMed  Google Scholar 

  14. Henkel AW, Welzel O, Groemer TW, Tripal P, Rotter A, Kornhuber J (2010) Fluoxetine prevents stimulation-dependent fatigue of synaptic vesicle exocytosis in hippocampal neurons. J Neurochem 114(3):697–705. doi:10.1111/j.1471-4159.2010.06795.x

    Article  CAS  PubMed  Google Scholar 

  15. Jaffe EH (1998) Ca2+ dependency of serotonin and dopamine release from CNS slices of chronically isolated rats. Psychopharmacology (Berl) 139(3):255–260

    Article  CAS  Google Scholar 

  16. Tischbirek CH, Wenzel EM, Zheng F, Huth T, Amato D, Trapp S, Denker A, Welzel O, Lueke K, Svetlitchny A, Rauh M, Deusser J, Schwab A, Rizzoli SO, Henkel AW, Muller CP, Alzheimer C, Kornhuber J, Groemer TW (2012) Use-dependent inhibition of synaptic transmission by the secretion of intravesicularly accumulated antipsychotic drugs. Neuron 74(5):830–844. doi:10.1016/j.neuron.2012.04.019

    Article  CAS  PubMed  Google Scholar 

  17. Ye ZY, Zhou KQ, Xu TL, Zhou JN (2008) Fluoxetine potentiates GABAergic IPSCs in rat hippocampal neurons. Neurosci Lett 442(1):24–29. doi:10.1016/j.neulet.2008.06.072

    Article  CAS  PubMed  Google Scholar 

  18. Welzel O, Tischbirek CH, Jung J, Kohler EM, Svetlitchny A, Henkel AW, Kornhuber J, Groemer TW (2010) Synapse clusters are preferentially formed by synapses with large recycling pool sizes. PLoS One 5(10):e13514. doi:10.1371/journal.pone.0013514

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sankaranarayanan S, De Angelis D, Rothman JE, Ryan TA (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79(4):2199–2208. doi:10.1016/S0006-3495(00)76468-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Welzel O, Knorr J, Stroebel AM, Kornhuber J, Groemer TW (2011) A fast and robust method for automated analysis of axonal transport. Eur Biophys J 40(9):1061–1069. doi:10.1007/s00249-011-0722-3

    Article  PubMed  Google Scholar 

  21. Threadgill R, Bobb K, Ghosh A (1997) Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19(3):625–634

    Article  CAS  PubMed  Google Scholar 

  22. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151(2):182–195. doi:10.1016/j.jsb.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  23. Clements JD, Bekkers JM (1997) Detection of spontaneous synaptic events with an optimally scaled template. Biophys J 73(1):220–229. doi:10.1016/S0006-3495(97)78062-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Denker A, Bethani I, Krohnert K, Korber C, Horstmann H, Wilhelm BG, Barysch SV, Kuner T, Neher E, Rizzoli SO (2011) A small pool of vesicles maintains synaptic activity in vivo. Proc Natl Acad Sci U S A 108(41):17177–17182. doi:10.1073/pnas.1112688108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henkel AW, Lubke J, Betz WJ (1996) FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc Natl Acad Sci U S A 93(5):1918–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48(37):6903–6908. doi:10.1002/anie.200902073

    Article  CAS  PubMed  Google Scholar 

  27. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176. doi:10.1002/anie.200802376

    Article  CAS  PubMed  Google Scholar 

  28. van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009. doi:10.1038/nprot.2011.336

    Article  PubMed  Google Scholar 

  29. Wolter S, Loschberger A, Holm T, Aufmkolk S, Dabauvalle MC, van de Linde S, Sauer M (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9(11):1040–1041. doi:10.1038/nmeth.2224

    Article  CAS  PubMed  Google Scholar 

  30. Wolter S, Sauer M (2012) Follow-up to paper by S. Wolter, M. Schuttpelz, M. Tscherepanow, S. van de Linde, M. Heilemann and M. Sauer, entitled Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 245(1):109

    Article  CAS  PubMed  Google Scholar 

  31. Wolter S, Schuttpelz M, Tscherepanow M, van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22. doi:10.1111/j.1365-2818.2009.03287.x

    Article  CAS  PubMed  Google Scholar 

  32. Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17(15):5858–5867

    CAS  PubMed  Google Scholar 

  33. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195. doi:10.1038/28190

    Article  CAS  PubMed  Google Scholar 

  34. Sankaranarayanan S, Ryan TA (2000) Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2(4):197–204. doi:10.1038/35008615

    Article  CAS  PubMed  Google Scholar 

  35. Baumann P, Ulrich S, Eckermann G, Gerlach M, Kuss HJ, Laux G, Muller-Oerlinghausen B, Rao ML, Riederer P, Zernig G, Hiemke C (2005) The AGNP-TDM Expert Group Consensus Guidelines: focus on therapeutic monitoring of antidepressants. Dialogues Clin Neurosci 7(3):231–247

    PubMed  PubMed Central  Google Scholar 

  36. Micheva KD, Taylor CP, Smith SJ (2006) Pregabalin reduces the release of synaptic vesicles from cultured hippocampal neurons. Mol Pharmacol 70(2):467–476. doi:10.1124/mol.106.023309

    Article  CAS  PubMed  Google Scholar 

  37. Boselli C, Barbone MS, Lucchelli A (2007) Older versus newer antidepressants: substance P or calcium antagonism? Can J Physiol Pharmacol 85(10):1004–1011. doi:10.1139/y07-089

    Article  CAS  PubMed  Google Scholar 

  38. Schipke CG, Heuser I, Peters O (2011) Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 45(2):242–248. doi:10.1016/j.jpsychires.2010.06.005

    Article  PubMed  Google Scholar 

  39. Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Sudhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410(6824):41–49. doi:10.1038/35065004

    Article  CAS  PubMed  Google Scholar 

  40. Groffen AJ, Martens S, Diez Arazola R, Cornelisse LN, Lozovaya N, de Jong AP, Goriounova NA, Habets RL, Takai Y, Borst JG, Brose N, McMahon HT, Verhage M (2010) Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 327(5973):1614–1618. doi:10.1126/science.1183765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lynch KL, Gerona RR, Kielar DM, Martens S, McMahon HT, Martin TF (2008) Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol Biol Cell 19(12):5093–5103. doi:10.1091/mbc.E08-03-0235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martens S, Kozlov MM, McMahon HT (2007) How synaptotagmin promotes membrane fusion. Science 316(5828):1205–1208. doi:10.1126/science.1142614

    Article  CAS  PubMed  Google Scholar 

  43. Pang ZP, Shin OH, Meyer AC, Rosenmund C, Sudhof TC (2006) A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex binding in synaptic exocytosis. J Neurosci 26(48):12556–12565. doi:10.1523/JNEUROSCI.3804-06.2006

    Article  CAS  PubMed  Google Scholar 

  44. Li Z, Burrone J, Tyler WJ, Hartman KN, Albeanu DF, Murthy VN (2005) Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proc Natl Acad Sci U S A 102(17):6131–6136. doi:10.1073/pnas.0501145102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ryan TA, Li L, Chin LS, Greengard P, Smith SJ (1996) Synaptic vesicle recycling in synapsin I knock-out mice. J Cell Biol 134(5):1219–1227

    Article  CAS  PubMed  Google Scholar 

  46. Welzel O, Henkel AW, Stroebel AM, Jung J, Tischbirek CH, Ebert K, Kornhuber J, Rizzoli SO, Groemer TW (2011) Systematic heterogeneity of fractional vesicle pool sizes and release rates of hippocampal synapses. Biophys J 100(3):593–601. doi:10.1016/j.bpj.2010.12.3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Welzel O, Tischbirek CH, Kornhuber J, Groemer TW (2012) Pool-independent labelling of synaptic vesicle exocytosis with single vesicle resolution in rat hippocampal neurons. J Neurosci Methods 205(2):258–264. doi:10.1016/j.jneumeth.2012.01.011

    Article  PubMed  Google Scholar 

  48. Murthy VN, Stevens CF (1999) Reversal of synaptic vesicle docking at central synapses. Nat Neurosci 2(6):503–507. doi:10.1038/9149

    Article  CAS  PubMed  Google Scholar 

  49. Hinshaw JE (2000) Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16:483–519. doi:10.1146/annurev.cellbio.16.1.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roux A, Uyhazi K, Frost A, De Camilli P (2006) GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441(7092):528–531. doi:10.1038/nature04718

    Article  CAS  PubMed  Google Scholar 

  51. Ryan TA, Smith SJ (1995) Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14(5):983–989

    Article  CAS  PubMed  Google Scholar 

  52. Kim SH, Ryan TA (2010) CDK5 serves as a major control point in neurotransmitter release. Neuron 67(5):797–809. doi:10.1016/j.neuron.2010.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez-Alfonso T, Ryan TA (2008) A heterogeneous “resting” pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses. Brain Cell Biol 36(1–4):87–100. doi:10.1007/s11068-008-9030-y

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marra V, Burden JJ, Thorpe JR, Smith IT, Smith SL, Hausser M, Branco T, Staras K (2012) A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 76(3):579–589. doi:10.1016/j.neuron.2012.08.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Orenbuch A, Shalev L, Marra V, Sinai I, Lavy Y, Kahn J, Burden JJ, Staras K, Gitler D (2012) Synapsin selectively controls the mobility of resting pool vesicles at hippocampal terminals. J Neurosci 32(12):3969–3980. doi:10.1523/JNEUROSCI.5058-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Betz WJ, Bewick GS, Ridge RM (1992) Intracellular movements of fluorescently labeled synaptic vesicles in frog motor nerve terminals during nerve stimulation. Neuron 9(5):805–813

    Article  CAS  PubMed  Google Scholar 

  57. Darcy KJ, Staras K, Collinson LM, Goda Y (2006) Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci 9(3):315–321. doi:10.1038/nn1640

    Article  CAS  PubMed  Google Scholar 

  58. Staras K, Branco T, Burden JJ, Pozo K, Darcy K, Marra V, Ratnayaka A, Goda Y (2010) A vesicle superpool spans multiple presynaptic terminals in hippocampal neurons. Neuron 66(1):37–44. doi:10.1016/j.neuron.2010.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Levitan ES, Lanni F, Shakiryanova D (2007) In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction. Nat Protoc 2(5):1117–1125. doi:10.1038/nprot.2007.142

    Article  CAS  PubMed  Google Scholar 

  60. Gould TJ, Verkhusha VV, Hess ST (2009) Imaging biological structures with fluorescence photoactivation localization microscopy. Nat Protoc 4(3):291–308. doi:10.1038/nprot.2008.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783. doi:10.1016/S0006-3495(02)75618-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Prange O, Murphy TH (1999) Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons. J Neurosci 19(15):6427–6438

    CAS  PubMed  Google Scholar 

  63. Lenkey N, Karoly R, Kiss JP, Szasz BK, Vizi ES, Mike A (2006) The mechanism of activity-dependent sodium channel inhibition by the antidepressants fluoxetine and desipramine. Mol Pharmacol 70(6):2052–2063. doi:10.1124/mol.106.026419

    Article  CAS  PubMed  Google Scholar 

  64. Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E (2008) Identification of new functional inhibitors of acid sphingomyelinase using a structure–property–activity relation model. J Med Chem 51(2):219–237. doi:10.1021/jm070524a

    Article  CAS  PubMed  Google Scholar 

  65. Koch S, Perry KW, Nelson DL, Conway RG, Threlkeld PG, Bymaster FP (2002) R-fluoxetine increases extracellular DA, NE, as well as 5-HT in rat prefrontal cortex and hypothalamus: an in vivo microdialysis and receptor binding study. Neuropsychopharmacology 27(6):949–959. doi:10.1016/S0893-133X(02)00377-9

    Article  CAS  PubMed  Google Scholar 

  66. Henkel AW, Sperling W, Rotter A, Reulbach U, Reichardt C, Bonsch D, Maler JM, Kornhuber J, Wiltfang J (2008) Antidepressant drugs modulate growth factors in cultured cells. BMC Pharmacol 8:6. doi:10.1186/1471-2210-8-6

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dick IE, Brochu RM, Purohit Y, Kaczorowski GJ, Martin WJ, Priest BT (2007) Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J Pain 8(4):315–324. doi:10.1016/j.jpain.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  68. Hahn SJ, Choi JS, Rhie DJ, Oh CS, Jo YH, Kim MS (1999) Inhibition by fluoxetine of voltage-activated ion channels in rat PC12 cells. Eur J Pharmacol 367(1):113–118

    Article  CAS  PubMed  Google Scholar 

  69. Pacher P, Kecskemeti V (2004) Cardiovascular effects of selective serotonin reuptake inhibitor antidepressants. Orv Hetil 145(8):425–431

    PubMed  Google Scholar 

  70. Sung MJ, Ahn HS, Hahn SJ, Choi BH (2008) Open channel block of Kv3.1 currents by fluoxetine. J Pharmacol Sci 106(1):38–45

    Article  CAS  PubMed  Google Scholar 

  71. Traboulsie A, Chemin J, Kupfer E, Nargeot J, Lory P (2006) T-type calcium channels are inhibited by fluoxetine and its metabolite norfluoxetine. Mol Pharmacol 69(6):1963–1968. doi:10.1124/mol.105.020842

    Article  CAS  PubMed  Google Scholar 

  72. Waters J, Smith SJ (2000) Phorbol esters potentiate evoked and spontaneous release by different presynaptic mechanisms. J Neurosci 20(21):7863–7870

    CAS  PubMed  Google Scholar 

  73. Virmani T, Ertunc M, Sara Y, Mozhayeva M, Kavalali ET (2005) Phorbol esters target the activity-dependent recycling pool and spare spontaneous vesicle recycling. J Neurosci 25(47):10922–10929. doi:10.1523/JNEUROSCI.3766-05.2005

    Article  CAS  PubMed  Google Scholar 

  74. Wang HG, Lu FM, Jin I, Udo H, Kandel ER, de Vente J, Walter U, Lohmann SM, Hawkins RD, Antonova I (2005) Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 45(3):389–403. doi:10.1016/j.neuron.2005.01.011

    Article  CAS  PubMed  Google Scholar 

  75. Shioda K, Nisijima K, Kasai M, Yoshino T, Kato S (2012) Risperidone attenuates the increase of extracellular nitric oxide and glutamate levels in serotonin syndrome animal models. Neurosci Lett 528(1):22–26. doi:10.1016/j.neulet.2012.08.083

    Article  CAS  PubMed  Google Scholar 

  76. Gonzalez-Trujano ME, Alvarado-Vasquez N, Mendoza-Sotelo J, Lopez G, Estrada-Camarena E, Martinez-Mota L, Moreno J (2012) Alterations on the morphology, nitric oxide synthesis and activity of platelets reproduced in rats as possible biomarkers for depression are reversed by fluoxetine. Pharmacol Biochem Behav 102(2):349–356. doi:10.1016/j.pbb.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  77. Cardenas A, Moro MA, Hurtado O, Leza JC, Lizasoain I (2005) Dual role of nitric oxide in adult neurogenesis. Brain Res Brain Res Rev 50(1):1–6. doi:10.1016/j.brainresrev.2005.03.006

    Article  CAS  PubMed  Google Scholar 

  78. Cheng A, Wang S, Cai J, Rao MS, Mattson MP (2003) Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev Biol 258(2):319–333

    Article  CAS  PubMed  Google Scholar 

  79. Brunoni AR, Lopes M, Fregni F (2008) A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 11(8):1169–1180. doi:10.1017/S1461145708009309

    Article  CAS  PubMed  Google Scholar 

  80. Abdul-Hay S, Schiefer IT, Chandrasena RE, Li M, Abdelhamid R, Wang YT, Tavassoli E, Michalsen B, Asghodom RT, Luo J, Thatcher GR (2011) NO-SSRIs: nitric oxide chimera drugs incorporating a selective serotonin reuptake inhibitor. ACS Med Chem Lett 2(9):656–661. doi:10.1021/ml2000033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Castren E, Rantamaki T (2010) Role of brain-derived neurotrophic factor in the aetiology of depression: implications for pharmacological treatment. CNS Drugs 24(1):1–7. doi:10.2165/11530010-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  82. De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA, Murray TK, Gaillard JP, Deville C, Xhenseval V, Thomas CE, O'Neill MJ, Zetterstrom TS (2004) Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 128(3):597–604. doi:10.1016/j.neuroscience.2004.06.054

    Article  PubMed  Google Scholar 

  83. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95. doi:10.1038/nature10130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Monteggia LM, Gideons E, Kavalali ET (2012) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biological psychiatry. doi:10.1016/j.biopsych.2012.09.006

    PubMed  PubMed Central  Google Scholar 

  85. Denker A, Rizzoli SO (2010) Synaptic vesicle pools: an update. Front Synaptic Neurosci 2:135. doi:10.3389/fnsyn.2010.00135

    PubMed  PubMed Central  Google Scholar 

  86. Andreae LC, Fredj NB, Burrone J (2012) Independent vesicle pools underlie different modes of release during neuronal development. J Neurosci 32(5):1867–1874. doi:10.1523/JNEUROSCI.5181-11.2012

    Article  CAS  PubMed  Google Scholar 

  87. Fredj NB, Burrone J (2009) A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat Neurosci 12(6):751–758. doi:10.1038/nn.2317

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hua Y, Sinha R, Martineau M, Kahms M, Klingauf J (2010) A common origin of synaptic vesicles undergoing evoked and spontaneous fusion. Nat Neurosci 13(12):1451–1453. doi:10.1038/nn.2695

    Article  CAS  PubMed  Google Scholar 

  89. Wilhelm BG, Groemer TW, Rizzoli SO (2010) The same synaptic vesicles drive active and spontaneous release. Nat Neurosci 13(12):1454–1456. doi:10.1038/nn.2690

    Article  CAS  PubMed  Google Scholar 

  90. Groemer TW, Klingauf J (2007) Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat Neurosci 10(2):145–147. doi:10.1038/nn1831

    Article  CAS  PubMed  Google Scholar 

  91. Kornhuber J, Henkel AW, Groemer TW, Stadtler S, Welzel O, Tripal P, Rotter A, Bleich S, Trapp S (2010) Lipophilic cationic drugs increase the permeability of lysosomal membranes in a cell culture system. J Cell Physiol 224(1):152–164. doi:10.1002/jcp.22112

    CAS  PubMed  Google Scholar 

  92. Kornhuber J, Schultz A, Wiltfang J, Meineke I, Gleiter CH, Zochling R, Boissl KW, Leblhuber F, Riederer P (1999) Persistence of haloperidol in human brain tissue. Am J Psychiatry 156(6):885–890

    Article  CAS  PubMed  Google Scholar 

  93. Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET (2013) Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci 33(16):6990–7002. doi:10.1523/JNEUROSCI.4998-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sapolsky RM (2001) Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci U S A 98(22):12320–12322. doi:10.1073/pnas.231475998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Andreas W. Henkel for fruitful discussions and Katrin Ebert and Elke Meyer for excellent technical assistance. We would also like to thank Peter Gmeiner and Alina Tabor for assistance with the spectrophotometer.

Funding

This work was supported by the Interdisciplinary Center of Clinical Research (IZKF) in Erlangen (Project E10) (to Teja W. Groemer and Volker Eulenburg).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teja W. Groemer.

Additional information

Jasmin Jung and Kristina Loy, as well as Oliver Welzel and Teja W. Groemer contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s12035-017-0476-8.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Fluoxetine does not influence protein levels in hippocampal neurons. Exemplary Western Blot. Top, first lane, molecular weight marker. Lysates of fluoxetine-treated cells were compared with lysates of untreated cells. Antibodies against dynamin, synaptotagmin1, synaptobrevin2 and CDK5 were used to compare the protein levels. GAPDH served as a loading control. Bottom, Quantification of intensities of blotted bands (Wilcoxon rank sum test: n.s.; N=3) (JPEG 248 kb)

High Resolution Image (TIFF 18.5 mb)

Fig. S2

Fluoxetine increases the number of release-competent synaptic vesicles in repeatedly stimulated neurons. A Exemplary images of spH-transfected neurons treated with 1 μM fluoxetine or DMSO under the v-ATPase inhibitor folimycin, respectively, before (pre) and after the first, second and third stimulation round (1 st stim to 3 rd stim). Scale bar, 10 μm. Cells were repeatedly stimulated with 600 pulses at 30 Hz with decreasing inter-stimulation intervals after 30, 300, 500, 600, 650 and 675 seconds, respectively. As no further fluorescence increase was observed after the 3rd stimulation, corresponding data was omitted. B Fluorescence profiles for control and fluoxetine-treated conditions for the 1st to the 3rd stimulation. The 1st stimulations did not differ, whereas in the 2nd and 3rd stimulation round fluoxetine mobilized more synaptic vesicles (two-sample Kolmogorov–Smirnov test, 1st stimulation: p = 0.33, 2nd stimulation: p<0.001, 3rd stimulation: p<0.001). C Stimulationinduced fluorescence changes of neurons treated with 1 μM fluoxetine or vehicle (DMSO). Fluorescence changes were normalized to their first amplitude, respectively. In cells treated with fluoxetine more synaptic vesicles were mobilized in the 2nd and 3rd stimulation round (two-sample t test, 1st stimulation: p = 0.50, 2nd stimulation: p = 0.02, 3rd stimulation: p = 0.06; N =4) (JPEG 436 kb)

High Resolution Image (TIFF 9.58 mb)

Fig. S3

Fluoxetine does not influence synaptic vesicle endocytosis. A Illustration of αGFPCypHerTM5E labeling of spH-transfected neurons and its fluorescence properties. Hippocampal neurons expressing synapto-pHluorin, where some proteins are located on the cell surface. CypHerTM5E-labeled antibodies against the protein GFP (pHluorin) added to extracellular solution. Fluorescence of CypHerTM5E is reduced in neutral pH 7.4. Upon an electrical stimulus vesicles fuse with the plasma membrane and αGFP-CypHerTM5E binds to the new available synapto-pHluorin proteins. Furthermore the intravesicular protons are lost. After compensatory endocytosis synaptic vesicles are reacidified and the fluorescence of CypHerTM5E increases. Thus, αSyt1-CypHerTM5E enables the measurement of exocytosis and endocytosis/reacidification of synaptic vesicles. B Representative images of hippocampal neurons expressing spH labeled with αGFP-CypHer™5E for detection of acutely recycling synaptic vesicles. Images are shown before, during and after stimulation with 600 pulses at 30 Hz. Scale bar, 10 μm. C Average fluorescence profiles of simultaneously detected spH and αSyt1-CypHerTM5E upon a stimulation with 600 pulses at 30 Hz with and without 1 μM fluoxetine. D Quantification of fluorescence changes due to electrical stimulus of 600 pulses at 30 Hz (two-sample t test, spH: p = 0.58, CypHer™5E: p = 0.91; N = 4). E Fluoxetine has no effect on endocytosis kinetics in primary hippocampal neurons. Average fluorescence profiles of αSyt1-CypHerTM5E upon a stimulation with 600 pulses at 30 Hz before and after shortterm incubation with 1 μM fluoxetine or vehicle. Fluorescence profiles were normalized for 4 better comparison of endocytosis kinetics. Inset, typical image of neurons, where recycling synaptic vesicles were labeled with αSyt1-CypHerTM5E (JPEG 327 kb)

High Resolution Image (TIFF 24.5 mb)

Fig. S4

Fluoxetine increases vesicle exocytosis by recruitment of additional vesicles and leads to enhanced vesicle turnover. A Exemplary images of two stimulations under 80 nM folimycin. Folimycin prevents reacidification of synaptic vesicles and thus spH quenching, and is therefore a measure of net exocytosis. Scale bar, 10 μm. B Fluorescence read outs after first and second stimulation with 600 pulses at a frequency of 10 Hz. The first control stimulation evokes a similar fluorescence increase in both settings whereas the increase at the second stimulus is larger after short-term incubation with 1 μM Fluoxetine compared to the DMSO control. C Quantification of fluorescence increase normalized to the corresponding control stimulus (two-sample t test; 1st stimulation: p = 0.99, 2nd stimulation: p = 0.05; N = 4 each). D Incubation of hippocampal neurons transfected with spH with and without fluoxetine reveals higher vesicle turnover in fluoxetine-treated cells compared to DMSO control. Neurons were incubated with αGFP-CypHer™5E and drug for 10 min at 37 °C under 40 mM KCl. CypHer™5E signals were normalized to corresponding spH signals to handle different expression level due to transfection. Scale bar, 10 μm. (E) Quantification of fluorescence signals revealed more recycling vesicles in fluoxetine-treated neurons (two-sample t test, p = 0.05; N = 4 each). F Fluoxetine increases FM 1-43 loading. After short-term incubation with 1 μM fluoxetine or DMSO for 20 min at 37 °C neurons were stained with 2.5 μM FM 1-43 using 1,200 pulses at 40 Hz. Fluorescence was determined at dye-loaded synapses and normalized to the control (G; two-sample t test, p = 0.01; N = 5 each) (JPEG 264 kb)

High Resolution Image (TIFF 20.0 mb)

Fig. S5

Fluoxetine does not influence emission spectra and intensity of FM 1-43, CypHer™5E or Alexa488. A Emission spectra of FM 1-43 with (blue) and without (black) 1 μM fluoxetine. All solutions were mixed with 20 % CHAPS. B The spectrum of the pHdependent dye CypHer™5E coupled to an anti-synaptotagmin1 antibody remains unaltered under 1 μM fluoxetine (blue). All solutions were prepared at intravesicular pH of 5.3 at which CypHer™5E is in its fluorescent state. C Emission profile of Alexa488 coupled to an antisynaptotagmin1 antibody with (blue) and without (black) 1 μM fluoxetine (N = 3 each) (JPEG 133 kb)

High Resolution Image (TIFF 6.71 mb)

Fig. S6

Short-term application of 1 μM fluoxetine did not influence the ultrastructure of hippocampal synapses. A Fluoxetine had no impact on the synapse number. Exemplary detail images of hippocampal synapses, where recycling synaptic vesicles were labeled using αSyt1- Alexa488. Top, Images taken by conventional epifluorescence microscopy. Bottom, Corresponding images taken by dSTORM super resolution microscopy. More details of synaptic morphology are clearly visible compared to the conventional technique. Scale bar, 1 μm. B Quantification of the number of neighboring synapses in a 50 μm2 circular area (twosample t test: p = 0.49; N = 7 each). C Fluoxetine did not alter vesicle numbers. Transmission electron microscopy affirmed the results obtained with fluorescence microscopy. Representative ultrastructural images of hippocampal synapses. Short-term application of 1 μM fluoxetine did not affect the ultrastructural morphology of hippocampal synapses showing pre- and postsynaptic densities, synaptic clefts, and accumulations of synaptic vesicles. Scale bar, 0.5 μm. D Quantification of synaptic vesicles (two-sample t test, p = 0.5656, N = 20 each) (JPEG 539 kb)

High Resolution Image (TIFF 14.2 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J., Loy, K., Schilling, EM. et al. The Antidepressant Fluoxetine Mobilizes Vesicles to the Recycling Pool of Rat Hippocampal Synapses During High Activity. Mol Neurobiol 49, 916–930 (2014). https://doi.org/10.1007/s12035-013-8569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8569-5

Keywords

Navigation