Skip to main content

Advertisement

Log in

Acceleration of the Development of Alzheimer’s Disease in Amyloid Beta-Infused Peroxiredoxin 6 Overexpression Transgenic Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The amyloid beta (Aβ) peptide in the brains of patients with Alzheimer’s disease (AD) is cytotoxic to neurons and has a central role in the pathogenesis of the disease. Peroxiredoxin 6 (Prdx6) is an antioxidant protein and could act as a cytoprotective protein. However, the role of Prdx6 in neurodegenerative disease has not been studied. Thus, the roles and action mechanisms in the development of AD were examined. Aβ1–42-induced memory impairment in Prdx6 transgenic mice was worse than C57BL/6 mice, and the expression of amyloid precursor protein cleavage, C99, β-site APP-cleaving enzyme 1, inducible nitric oxide synthase, and cyclooxygenase-2 was greatly increased. In addition, the astrocytes and microglia cells of Aβ-infused Prdx6 transgenic mice were more activated, and Aβ also significantly increased lipid peroxidation and protein carbonyl levels, but decreased glutathione levels. Furthermore, we found that translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus was increased in Aβ-infused Prdx6 transgenic mice. These results suggest that the overexpression of Prdx6 could accelerate the development of AD through increased amyloidogenesis through independent PLA2 activation and Nrf2 transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greenough MA, Camakaris J, Bush AI (2012) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int. doi:10.1016/j.neuint.2012.08.014

    PubMed  Google Scholar 

  2. Craft S (2009) The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 66(3):300–305. doi:10.1001/archneurol.2009.27

    PubMed Central  PubMed  Google Scholar 

  3. Zetterberg H, Blennow K, Hanse E (2010) Amyloid β and APP as biomarkers for Alzheimer’s disease. Exp Gerontol 45(1):23–29. doi:10.1016/j.exger.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  4. Lee YJ, Choi DY, Lee YK, Lee YM, Han SB, Kim YH, Kim KH, Nam SY, Lee BJ, Kang JK, Yun YW, Oh KW, Hong JT (2012) 4-O-methylhonokiol prevents memory impairment in the Tg2576 transgenic mice model of Alzheimer’s disease via regulation of beta-secretase activity. J Alzheimers Dis JAD 29(3):677–690. doi:10.3233/JAD-2012-111835

    CAS  Google Scholar 

  5. Fuller S, Munch G, Steele M (2009) Activated astrocytes: a therapeutic target in Alzheimer’s disease? Expert Rev Neurother 9(11):1585–1594. doi:10.1586/ern.09.111

    Article  CAS  PubMed  Google Scholar 

  6. Leung E, Guo L, Bu J, Maloof M, El Khoury J, Geula C (2011) Microglia activation mediates fibrillar amyloid-beta toxicity in the aged primate cortex. Neurobiol Aging 32(3):387–397. doi:10.1016/j.neurobiolaging.2009.02.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Broersen K, Rousseau F, Schymkowitz J (2010) The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer’s disease: oligomer size or conformation? Alzheimers Res Ther 2(4):12. doi:10.1186/alzrt36

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, Masutani H, Yodoi J, Urano Y, Nagano T, Ichijo H (2005) Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ 12(1):19–24. doi:10.1038/sj.cdd.4401528

    Article  CAS  PubMed  Google Scholar 

  9. Lee HE, Kim DH, Park SJ, Kim JM, Lee YW, Jung JM, Lee CH, Hong JG, Liu X, Cai M, Park KJ, Jang DS, Ryu JH (2012) Neuroprotective effect of sinapic acid in a mouse model of amyloid beta(1–42) protein-induced Alzheimer’s disease. Pharmacol Biochem Behav. doi:10.1016/j.pbb.2012.08.015

    Google Scholar 

  10. Schilling T, Eder C (2011) Amyloid-beta-induced reactive oxygen species production and priming are differentially regulated by ion channels in microglia. J Cell Physiol 226(12):3295–3302. doi:10.1002/jcp.22675

    Article  CAS  PubMed  Google Scholar 

  11. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664

    Article  PubMed  Google Scholar 

  12. Kang MK, Kang NJ, Jang YJ, Lee KW, Lee HJ (2009) Gallic acid induces neuronal cell death through activation of c-Jun N-terminal kinase and downregulation of Bcl-2. Ann N Y Acad Sci 1171:514–520. doi:10.1111/j.1749-6632.2009.04728.x

    Article  CAS  PubMed  Google Scholar 

  13. Kubo E, Miyazawa T, Fatma N, Akagi Y, Singh DP (2006) Development- and age-associated expression pattern of peroxiredoxin 6, and its regulation in murine ocular lens. Mech Ageing Dev 127(3):249–256. doi:10.1016/j.mad.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  14. Fatma N, Kubo E, Sharma P, Beier DR, Singh DP (2005) Impaired homeostasis and phenotypic abnormalities in Prdx6−/− mice lens epithelial cells by reactive oxygen species: increased expression and activation of TGFbeta. Cell Death Differ 12(7):734–750. doi:10.1038/sj.cdd.4401597

    Article  CAS  PubMed  Google Scholar 

  15. Clausen A, Xu X, Bi X, Baudry M (2012) Effects of the superoxide dismutase/catalase mimetic EUK-207 in a mouse model of Alzheimer’s disease: protection against and interruption of progression of amyloid and tau pathology and cognitive decline. J Alzheimers Dis JAD 30(1):183–208. doi:10.3233/JAD-2012-111298

    CAS  Google Scholar 

  16. Melov S, Wolf N, Strozyk D, Doctrow SR, Bush AI (2005) Mice transgenic for Alzheimer disease beta-amyloid develop lens cataracts that are rescued by antioxidant treatment. Free Radic Biol Med 38(2):258–261. doi:10.1016/j.freeradbiomed.2004.10.023

    Article  CAS  PubMed  Google Scholar 

  17. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    Article  CAS  PubMed  Google Scholar 

  18. Chatterjee S, Feinstein SI, Dodia C, Sorokina E, Lien YC, Nguyen S, Debolt K, Speicher D, Fisher AB (2011) Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. J Biol Chem 286(13):11696–11706. doi:10.1074/jbc.M110.206623

    Article  CAS  PubMed  Google Scholar 

  19. Power JH, Asad S, Chataway TK, Chegini F, Manavis J, Temlett JA, Jensen PH, Blumbergs PC, Gai WP (2008) Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer’s disease pathology. Acta Neuropathol 115(6):611–622. doi:10.1007/s00401-008-0373-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hayn M, Kremser K, Singewald N, Cairns N, Nemethova M, Lubec B, Lubec G (1996) Evidence against the involvement of reactive oxygen species in the pathogenesis of neuronal death in Down’s syndrome and Alzheimer’s disease. Life Sci 59(7):537–544

    Article  CAS  PubMed  Google Scholar 

  21. Power JH, Shannon JM, Blumbergs PC, Gai WP (2002) Nonselenium glutathione peroxidase in human brain: elevated levels in Parkinson’s disease and dementia with lewy bodies. Am J Pathol 161(3):885–894. doi:10.1016/S0002-9440(10)64249-6

    Article  CAS  PubMed  Google Scholar 

  22. Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB (2000) 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 275(37):28421–28427. doi:10.1074/jbc.M005073200

    Article  CAS  PubMed  Google Scholar 

  23. Manevich Y, Reddy KS, Shuvaeva T, Feinstein SI, Fisher AB (2007) Structure and phospholipase function of peroxiredoxin 6: identification of the catalytic triad and its role in phospholipid substrate binding. J Lipid Res 48(10):2306–2318. doi:10.1194/jlr.M700299-JLR200

    Article  CAS  PubMed  Google Scholar 

  24. Hooks SB, Cummings BS (2008) Role of Ca2+-independent phospholipase A2 in cell growth and signaling. Biochem Pharmacol 76(9):1059–1067. doi:10.1016/j.bcp.2008.07.044

    Article  CAS  PubMed  Google Scholar 

  25. Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45(2):205–213. doi:10.1194/jlr.R300016-JLR200

    Article  CAS  PubMed  Google Scholar 

  26. Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70(3):462–473. doi:10.1002/jnr.10351

    Article  CAS  PubMed  Google Scholar 

  27. Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14(1):89–94

    Article  CAS  PubMed  Google Scholar 

  28. Roede JR, Orlicky DJ, Fisher AB, Petersen DR (2009) Overexpression of peroxiredoxin 6 does not prevent ethanol-mediated oxidative stress and may play a role in hepatic lipid accumulation. J Pharmacol Exp Ther 330(1):79–88. doi:10.1124/jpet.109.152983

    Article  CAS  PubMed  Google Scholar 

  29. Tulsawani R, Kelly LS, Fatma N, Chhunchha B, Kubo E, Kumar A, Singh DP (2010) Neuroprotective effect of peroxiredoxin 6 against hypoxia-induced retinal ganglion cell damage. BMC Neurosci 11:125. doi:10.1186/1471-2202-11-125

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wang Y, Phelan SA, Manevich Y, Feinstein SI, Fisher AB (2006) Transgenic mice overexpressing peroxiredoxin 6 show increased resistance to lung injury in hyperoxia. Am J Respir Cell Mol Biol 34(4):481–486. doi:10.1165/rcmb.2005-0333OC

    Article  CAS  PubMed  Google Scholar 

  31. Nabeshima T, Nitta A (1994) Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med 174(3):241–249

    Article  CAS  PubMed  Google Scholar 

  32. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  33. Lee YK, Choi IS, Ban JO, Lee HJ, Lee US, Han SB, Jung JK, Kim YH, Kim KH, Oh KW, Hong JT (2011) 4-O-methylhonokiol attenuated beta-amyloid-induced memory impairment through reduction of oxidative damages via inactivation of p38 MAP kinase. J Nutr Biochem 22(5):476–486. doi:10.1016/j.jnutbio.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  34. Power JH, Nicholas TE (1999) Immunohistochemical localization and characterization of a rat Clara cell 26-kDa protein (CC26) with similarities to glutathione peroxidase and phospholipase A2. Exp Lung Res 25(5):379–392

    Article  CAS  PubMed  Google Scholar 

  35. Sultana R, Perluigi M, Butterfield DA (2009) Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 118(1):131–150. doi:10.1007/s00401-009-0517-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, Zaccheo D, Pronzato MA, Danni O, Smith MA, Perry G, Tabaton M (2002) Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis 10(3):279–288

    Article  CAS  PubMed  Google Scholar 

  37. Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, Santoro G, Davit A, Danni O, Smith MA, Perry G, Tabaton M (2005) Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 92(3):628–636. doi:10.1111/j.1471-4159.2004.02895.x

    Article  CAS  PubMed  Google Scholar 

  38. Krapfenbauer K, Yoo BC, Fountoulakis M, Mitrova E, Lubec G (2002) Expression patterns of antioxidant proteins in brains of patients with sporadic Creutzfeldt–Jacob disease. Electrophoresis 23(15):2541–2547. doi:10.1002/1522-2683(200208)23:15<2541::AID-ELPS2541>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  39. Power JH, Blumbergs PC (2009) Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol 117(1):63–73. doi:10.1007/s00401-008-0438-3

    Article  CAS  PubMed  Google Scholar 

  40. Sun GY, Xu J, Jensen MD, Yu S, Wood WG, Gonzalez FA, Simonyi A, Sun AY, Weisman GA (2005) Phospholipase A2 in astrocytes: responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Mol Neurobiol 31(1–3):27–41. doi:10.1385/MN:31:1-3:027

    Article  CAS  PubMed  Google Scholar 

  41. Moses GS, Jensen MD, Lue LF, Walker DG, Sun AY, Simonyi A, Sun GY (2006) Secretory PLA2-IIA: a new inflammatory factor for Alzheimer’s disease. J Neuroinflammation 3:28. doi:10.1186/1742-2094-3-28

    Article  PubMed Central  PubMed  Google Scholar 

  42. Askarova S, Yang X, Lee JC (2011) Impacts of membrane biophysics in Alzheimer’s disease: from amyloid precursor protein processing to Aβ peptide-induced membrane changes. Int J Alzheimers Dis 2011:134971. doi:10.4061/2011/134971

  43. Kim SY, Jo HY, Kim MH, Cha YY, Choi SW, Shim JH, Kim TJ, Lee KY (2008) H2O2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up-regulation of iPLA2 activity. J Biol Chem 283(48):33563–33568. doi:10.1074/jbc.M806578200

    Article  CAS  PubMed  Google Scholar 

  44. Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC (2006) Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci Off J Soc Neurosci 26(43):11111–11119. doi:10.1523/JNEUROSCI.3505-06.2006

    Article  CAS  Google Scholar 

  45. Hall ED, Oostveen JA, Gurney ME (1998) Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23(3):249–256

    Article  CAS  PubMed  Google Scholar 

  46. Ayilavarapu S, Kantarci A, Fredman G, Turkoglu O, Omori K, Liu H, Iwata T, Yagi M, Hasturk H, Van Dyke TE (2010) Diabetes-induced oxidative stress is mediated by Ca2+-independent phospholipase A2 in neutrophils. J Immunol 184(3):1507–1515. doi:10.4049/jimmunol.0901219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Xu J, Yu S, Sun AY, Sun GY (2003) Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radic Biol Med 34(12):1531–1543

    Article  CAS  PubMed  Google Scholar 

  48. Sykiotis GP, Bohmann D (2008) Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Developmental cell 14(1):76–85. doi:10.1016/j.devcel.2007.12.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Motohashi H, Yamamoto M (2007) Carcinogenesis and transcriptional regulation through Maf recognition elements. Cancer science 98(2):135–139. doi:10.1111/j.1349-7006.2006.00358.x

    Article  CAS  PubMed  Google Scholar 

  50. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36(10):1199–1207. doi:10.1016/j.freeradbiomed.2004.02.074

    Article  CAS  PubMed  Google Scholar 

  51. Choudhry F, Howlett DR, Richardson JC, Francis PT, Williams RJ (2012) Pro-oxidant diet enhances beta/gamma secretase-mediated APP processing in APP/PS1 transgenic mice. Neurobiology of aging 33(5):960–968. doi:10.1016/j.neurobiolaging.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  52. Kumin A, Huber C, Rulicke T, Wolf E, Werner S (2006) Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am J Pathol 169(4):1194–1205. doi:10.2353/ajpath.2006.060119

    Article  CAS  PubMed  Google Scholar 

  53. Chowdhury I, Mo Y, Gao L, Kazi A, Fisher AB, Feinstein SI (2009) Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element. Free Radic Biol Med 46(2):146–153. doi:10.1016/j.freeradbiomed.2008.09.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean Government (MRC 2011-0028213), by a grant (A101836) from the Korean Health Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea, and by the Priority Research Centres Program through the NRF funded by the Ministry of Education, Science and Technology (2012-0031403).

Conflict of Interest

The authors declare no conflicts of interest. All of the experimental procedures were approved by the Animal Care and Use Committee (IACUC) of Chungbuk National University (approval number CBNUA-144-1001-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Tae Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, HM., Jin, P., Han, JY. et al. Acceleration of the Development of Alzheimer’s Disease in Amyloid Beta-Infused Peroxiredoxin 6 Overexpression Transgenic Mice. Mol Neurobiol 48, 941–951 (2013). https://doi.org/10.1007/s12035-013-8479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8479-6

Keywords

Navigation