Skip to main content

Advertisement

Log in

Activation of BKCa Channels Mediates Hippocampal Neuronal Death After Reoxygenation and Reperfusion

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excessive K+ efflux promotes central neuronal apoptosis; however, the type of potassium channel that mediates K+ efflux in response to different apoptosis-inducing stimuli is still unknown. It is hypothesized that the activation of large-conductance Ca2+-activated K+ channels (BKCa) mediates hypoxia/reoxygenation (H/R)- and ischemia/reperfusion (I/R)-induced neuronal apoptosis. Rat hippocampal neuronal cultures underwent apoptosis after reoxygenation, as assessed by morphologic observation, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and caspase-3 activation. Single-channel recordings revealed upregulation of BKCa channel activity 6 h after reoxygenation, which might be caused by elevated cytosolic Ca2+. The K+ ionophore valinomycin and the BKCa channel opener NS1619 induced neuronal apoptosis. Transfection of the BKCa channel α subunit into Chinese hamster ovary (CHO-K1) cells, which do not express endogenous K+ channels, or into neurons will induce cell apoptosis, indicating that the opening of the BKCa channel serves as a pivotal event in mediating cell apoptosis. The specific BKCa channel blockers charybdotoxin and iberiotoxin and the nonselective K+ channel blocker tetraethylammonium at concentrations more specific to the BKCa channel were neuroprotective. The A-type potassium channel blocker 4-aminopyridine and apamin, a small-conductance Ca2+-activated K+ channel blocker, were not protective. This result suggests the involvement of the BKCa channel in H/R-induced apoptosis. Similarly, specific BKCa channel blockers also showed neuroprotection in neurons subjected to oxygen-glucose deprivation/reoxygenation or animals subjected to forebrain ischemia–reperfusion. These results demonstrate that the over-activity of BKCa channels mediates hippocampal neuronal damage induced by H/R in vitro and I/R in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Banasiak KJ, Xia Y, Haddad GG (2000) Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobiol 62(3):215–249

    Article  CAS  PubMed  Google Scholar 

  2. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415

    Article  CAS  PubMed  Google Scholar 

  3. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11(5):491–498

    Article  CAS  PubMed  Google Scholar 

  4. Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol 64(2):139–147

    Article  CAS  PubMed  Google Scholar 

  5. Rosenbaum DM, Michaelson M, Batter DK, Doshi P, Kessler JA (1994) Evidence for hypoxia-induced, programmed cell death of cultured neurons. Ann Neurol 36(6):864–870

    Article  CAS  PubMed  Google Scholar 

  6. Choi DW (1996) Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6(5):667–672

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18(13):4914–4928

    CAS  PubMed  Google Scholar 

  8. Bossenmeyer C, Chihab R, Muller S, Schroeder H, Daval JL (1998) Hypoxia/reoxygenation induces apoptosis through biphasic induction of protein synthesis in cultured rat brain neurons. Brain Res 787(1):107–116

    Article  CAS  PubMed  Google Scholar 

  9. Cheng Y, Deshmukh M, D'Costa A, Demaro JA, Gidday JM, Shah A, Sun Y, Jacquin MF, Johnson EM, Holtzman DM (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101(9):1992–1999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tamatani M, Ogawa S, Tohyama M (1998) Roles of Bcl-2 and caspases in hypoxia-induced neuronal cell death: a possible neuroprotective mechanism of peptide growth factors. Brain Res Mol Brain Res 58(1–2):27–39

    Article  CAS  PubMed  Google Scholar 

  11. Le DA, Wu Y, Huang Z, Matsushita K, Plesnila N, Augustinack JC, Hyman BT, Yuan J, Kuida K, Flavell RA, Moskowitz MA (2002) Caspase activation and neuroprotection in caspase-3-deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc Natl Acad Sci U S A 99(23):15188–15193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hughes FM Jr, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzym Regul 39:157–171

    Article  CAS  Google Scholar 

  13. Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70(4):363–386

    Article  CAS  PubMed  Google Scholar 

  14. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278(5335):114–117

    Article  CAS  PubMed  Google Scholar 

  15. Chi XX, Xu ZC (2000) Differential changes of potassium currents in CA1 pyramidal neurons after transient forebrain ischemia. J Neurophysiol 84(6):2834–2843

    CAS  PubMed  Google Scholar 

  16. Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW (1998) Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death. Neurobiol Dis 5(2):81–88

    Article  CAS  PubMed  Google Scholar 

  17. Huang H, Gao TM, Gong L, Zhuang Z, Li X (2001) Potassium channel blocker TEA prevents CA1 hippocampal injury following transient forebrain ischemia in adult rats. Neurosci Lett 305(2):83–86

    Article  CAS  PubMed  Google Scholar 

  18. McLaughlin B, Pal S, Tran MP, Parsons AA, Barone FC, Erhardt JA, Aizenman E (2001) p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci 21(10):3303–3311

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Wei L, Yu SP, Gottron F, Snider BJ, Zipfel GJ, Choi DW (2003) Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke 34(5):1281–1286

    Article  CAS  PubMed  Google Scholar 

  20. Bossy-Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, Mathews E, Gotz T, Han J, Ellisman MH, Perkins GA, Lipton SA (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41(3):351–365

    Article  CAS  PubMed  Google Scholar 

  21. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272(48):30567–30576

    Article  CAS  PubMed  Google Scholar 

  22. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E (2003) Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci 23(12):4798–4802

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Redman PT, He K, Hartnett KA, Jefferson BS, Hu L, Rosenberg PA, Levitan ES, Aizenman E (2007) Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci U S A 104(9):3568–3573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca2+-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16(3):955–963

    CAS  PubMed  Google Scholar 

  25. Liu H, Moczydlowski E, Haddad GG (1999) O2 deprivation inhibits Ca2+-activated K+ channels via cytosolic factors in mice neocortical neurons. J Clin Invest 104(5):577–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306(5704):2093–2097

    Article  CAS  PubMed  Google Scholar 

  27. McCartney CE, McClafferty H, Huibant JM, Rowan EG, Shipston MJ, Rowe IC (2005) A cysteine-rich motif confers hypoxia sensitivity to mammalian large conductance voltage- and Ca-activated K (BK) channel alpha-subunits. Proc Natl Acad Sci U S A 102(49):17870–17876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chen M, Sun H, Wang Y, Hu P, Gao T (2003) Activation of BK channels mediates hippocampal neuronal apoptosis in culture induced by hypoxia/reoxygenation. J Neurochem 87(suppl 1):137

    Google Scholar 

  29. Chen M, Sun HY, Li SJ, Das M, Kong JM, Gao TM (2009) Nitric oxide as an upstream signal of p38 mediates hypoxia/reoxygenation-induced neuronal death. Neurosignals 17(2):162–168

    Article  CAS  PubMed  Google Scholar 

  30. Glazner GW, Chan SL, Lu C, Mattson MP (2000) Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J Neurosci 20(10):3641–3649

    CAS  PubMed  Google Scholar 

  31. Shou Y, Gunasekar PG, Borowitz JL, Isom GE (2000) Cyanide-induced apoptosis involves oxidative-stress-activated NF-kappaB in cortical neurons. Toxicol Appl Pharmacol 164(2):196–205

    Article  CAS  PubMed  Google Scholar 

  32. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  CAS  PubMed  Google Scholar 

  33. Tamatani M, Mitsuda N, Matsuzaki H, Okado H, Miyake S, Vitek MP, Yamaguchi A, Tohyama M (2000) A pathway of neuronal apoptosis induced by hypoxia/reoxygenation: roles of nuclear factor-kappaB and Bcl-2. J Neurochem 75(2):683–693

    Article  CAS  PubMed  Google Scholar 

  34. Yu SP, Kerchner GA (1998) Endogenous voltage-gated potassium channels in human embryonic kidney (HEK293) cells. J Neurosci Res 52(5):612–617

    Article  CAS  PubMed  Google Scholar 

  35. Gribkoff VK, Lum-Ragan JT, Boissard CG, Post-Munson DJ, Meanwell NA, Starrett JE Jr, Kozlowski ES, Romine JL, Trojnacki JT, McKay MC, Zhong J, Dworetzky SI (1996) Effects of channel modulators on cloned large-conductance calcium-activated potassium channels. Mol Pharmacol 50(1):206–217

    CAS  PubMed  Google Scholar 

  36. Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275(9):6453–6461

    Article  CAS  PubMed  Google Scholar 

  37. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    CAS  PubMed  Google Scholar 

  38. Miller C, Moczydlowski E, Latorre R, Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313(6000):316–318

    Article  CAS  PubMed  Google Scholar 

  39. Sah P (1996) Ca2+-activated K+ currents in neurons: types, physiological roles and modulation. Trends Neurosci 19(4):150–154

    Article  CAS  PubMed  Google Scholar 

  40. Grunnet M, Kaufmann WA (2004) Coassembly of big conductance Ca2+-activated K+ channels and l-type voltage-gated Ca2+ channels in rat brain. J Biol Chem 279(35):36445–36453

    Article  CAS  PubMed  Google Scholar 

  41. Gong LW, Gao TM, Huang H, Zhuang ZY, Tong Z (2002) Transient forebrain ischemia induces persistent hyperactivity of large conductance Ca2+-activated potassium channels via oxidation modulation in rat hippocampal CA1 pyramidal neurons. Eur J Neurosci 15(4):779–783

    Article  PubMed  Google Scholar 

  42. Nadeau H, McKinney S, Anderson DJ, Lester HA (2000) ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons. J Neurophysiol 84(2):1062–1075

    CAS  PubMed  Google Scholar 

  43. Lauritzen I, Zanzouri M, Honore E, Duprat F, Ehrengruber MU, Lazdunski M, Patel AJ (2003) K+-dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels. J Biol Chem 278(34):32068–32076

    Article  CAS  PubMed  Google Scholar 

  44. Zhou X, Wei J, Song M, Francis K, Yu SP (2011) Novel role of KCNQ2/3 channels in regulating neuronal cell viability. Cell Death Differ 18(3):493–505

    Article  CAS  PubMed  Google Scholar 

  45. Gribkoff VK, Starrett JE Jr, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW (2001) Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 7(4):471–477

    Article  CAS  PubMed  Google Scholar 

  46. Hartings JA, Rolli ML, Lu XCM, Tortella FC (2003) Deleyed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci 23(37):11602–11610

    CAS  PubMed  Google Scholar 

  47. Korsgaard MP, Hartz BP, Brown WD, Ahring PK, Strobaek D, Mirza NR (2005) Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther 314(1):282–292

    Article  CAS  PubMed  Google Scholar 

  48. Gao TM, Howard EM, Xu ZC (1998) Transient neurophysiological changes in CA3 neurons and dentate granule cells after severe forebrain ischemia in vivo. J Neurophysiol 80:2860–2869

    CAS  PubMed  Google Scholar 

  49. Liao Y, Kristiansen AM, Oksvold CP, Tuvnes FA, Gu N, Runden-Pran E, Ruth P, Sausbier M, Storm JF (2010) Neuronal Ca2+-activated K+ channels limit brain infarction and promote survival. PLoS One 5(12):e15601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Barbiero G, Duranti F, Bonelli G, Amenta JS, Baccino FM (1995) Intracellular ionic variations in the apoptotic death of L cells by inhibitors of cell cycle progression. Exp Cell Res 217(2):410–418

    Article  CAS  PubMed  Google Scholar 

  51. Benson RS, Heer S, Dive C, Watson AJ (1996) Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis. Am J Physiol 270(4 Pt 1):C1190–C1203

    CAS  PubMed  Google Scholar 

  52. McCarthy JV, Cotter TG (1997) Cell shrinkage and apoptosis: a role for potassium and sodium ion efflux. Cell Death Differ 4(8):756–770

    Article  CAS  PubMed  Google Scholar 

  53. Wible BA, Wang L, Kuryshev YA, Basu A, Haldar S, Brown AM (2002) Increased K+ efflux and apoptosis induced by the potassium channel modulatory protein KChAP/PIAS3beta in prostate cancer cells. J Biol Chem 277(20):17852–17862

    Article  CAS  PubMed  Google Scholar 

  54. Yu SP, Yeh CH, Gottron F, Wang X, Grabb MC, Choi DW (1999) Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J Neurochem 73(3):933–941

    Article  CAS  PubMed  Google Scholar 

  55. Yu SP, Yeh C, Strasser U, Tian M, Choi DW (1999) NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 284(5412):336–339

    Article  CAS  PubMed  Google Scholar 

  56. Wang L, Xu D, Dai W, Lu L (1999) An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J Biol Chem 274(6):3678–3685

    Article  CAS  PubMed  Google Scholar 

  57. Krick S, Platoshyn O, Sweeney M, Kim H, Yuan JX (2001) Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol 280(4):C970–C979

    CAS  PubMed  Google Scholar 

  58. Ekhterae D, Platoshyn O, Krick S, Yu Y, McDaniel SS, Yuan JX (2001) Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am J Physiol Cell Physiol 281(1):C157–C165

    CAS  PubMed  Google Scholar 

  59. Storey NM, Gomez-Angelats M, Bortner CD, Armstrong DL, Cidlowski JA (2003) Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J Biol Chem 278(35):33319–33326

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Greer MA (1995) Blocking K+ channels with TEA induces plasmalemma depolarization, increased [Ca2+]i, and ACTH secretion in AtT-20 cells. Mol Cell Endocrinol 109(1):11–18

    Article  CAS  PubMed  Google Scholar 

  61. Grutter MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10(6):649–655

    Article  CAS  PubMed  Google Scholar 

  62. Chang HY, Yang X (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64(4):821–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Bortner CD, Hughes FM Jr, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272(51):32436–32442

    Article  CAS  PubMed  Google Scholar 

  64. Perez GI, Maravei DV, Trbovich AM, Cidlowski JA, Tilly JL, Hughes FM Jr (2000) Identification of potassium-dependent and -independent components of the apoptotic machinery in mouse ovarian germ cells and granulosa cells. Biol Reprod 63(5):1358–1369

    Article  CAS  PubMed  Google Scholar 

  65. Li XM, Bai XC, Qin LN, Huang H, Xiao ZJ, Gao TM (2003) Neuroprotective effects of Buyang Huanwu Decoction on neuronal injury in hippocampus after transient forebrain ischemia in rats. Neurosci Lett 346(1–2):29–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. J.G. Nicholls and L. Mei for insightful suggestions and critical reading of the manuscript. This study was supported by grants from the National Natural Science Foundation of China (grant No. 81030022, 81070983, and U1201225), Key Project of Guangdong Province (grant No. 9351051501000003 and CXZD1018), the Guangzhou Science and Technology Project (grant No. 7411802013939), the Major State Basic Research Program of China (grant No. 2012CB518203), and Program for Changjiang Scholars and Innovative Research Team in University (IRT1142).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Ming Gao.

Additional information

M.C. and H.Y.S. contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Sun, HY., Hu, P. et al. Activation of BKCa Channels Mediates Hippocampal Neuronal Death After Reoxygenation and Reperfusion. Mol Neurobiol 48, 794–807 (2013). https://doi.org/10.1007/s12035-013-8467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8467-x

Keywords

Navigation