Skip to main content

Advertisement

Log in

Synaptic Plasticity in Neurodegenerative Diseases Evaluated and Modulated by In Vivo Neurophysiological Techniques

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several studies demonstrated in experimental models and in humans synaptic plasticity impairment in some neurodegenerative and neuropsychiatric diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and schizophrenia. Recently new neurophysiological tools, such as repetitive transcranial magnetic stimulation and transcranial direct current stimulation, have been introduced in experimental and clinical settings for studying physiology of the brain and modulating cortical activity. These techniques use noninvasive transcranial electrical or magnetic stimulation to modulate neurons activity in the human brain. Cortical stimulation might enhance or inhibit the activity of cortico–subcortical networks, depending on stimulus frequency and intensity, current polarity, and other stimulation parameters such as the configuration of the induced electric field and stimulation protocols. On this basis, in the last two decades, these techniques have rapidly become valuable tools to investigate physiology of the human brain and have been applied to treat drug-resistant neurological and psychiatric diseases. Here we describe these techniques and discuss the mechanisms that may explain these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baroncelli L et al (2011) Brain plasticity and disease: a matter of inhibition. Neural Plast 2011:286073

    Article  PubMed  Google Scholar 

  2. Byrne JH (1997) Synapses. Plastic plasticity. Nature 389(6653):791–792

    Article  PubMed  CAS  Google Scholar 

  3. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  PubMed  CAS  Google Scholar 

  4. Rioult-Pedotti MS, Friedman D, Donoghue JP (2000) Learning-induced LTP in neocortex. Science 290(5491):533–536

    Article  PubMed  CAS  Google Scholar 

  5. Shao CY et al (2011) Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Abeta and tau pathology in transgenic mouse models of Alzheimer's disease. Acta Neuropathol 122(3):285–292

    Article  PubMed  CAS  Google Scholar 

  6. Battaglia F et al (2007) Cortical plasticity in Alzheimer's disease in humans and rodents. Biol Psychiatry 62(12):1405–1412

    Article  PubMed  CAS  Google Scholar 

  7. Bagetta V et al (2010) Synaptic dysfunction in Parkinson's disease. Biochem Soc Trans 38(2):493–497

    Article  PubMed  CAS  Google Scholar 

  8. Orth M et al (2010) Abnormal motor cortex plasticity in premanifest and very early manifest Huntington disease. J Neurol Neurosurg Psychiatry 81(3):267–270

    Article  PubMed  Google Scholar 

  9. Hasan A et al (2011) Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behav Brain Res 224(1):15–22

    Article  PubMed  Google Scholar 

  10. Di Lazzaro V et al (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115(2):255–266

    Article  PubMed  Google Scholar 

  11. Di Lazzaro V et al (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease. J Neurol Neurosurg Psychiatry 75(4):555–559

    Article  PubMed  Google Scholar 

  12. Ziemann U (2004) TMS and drugs. Clin Neurophysiol 115(8):1717–1729

    Article  PubMed  CAS  Google Scholar 

  13. Di Lazzaro V et al (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59(3):392–397

    Article  PubMed  Google Scholar 

  14. Di Lazzaro V et al (2006) In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias. Neurology 66(7):1111–1113

    Article  PubMed  Google Scholar 

  15. Di Lazzaro V et al (2010) Motor cortex plasticity predicts recovery in acute stroke. Cereb Cortex 20(7):1523–1528

    Article  PubMed  Google Scholar 

  16. Ugawa Y, Hanajima R (2001) Transcranial magnetic stimulation (TMS) in movement disorders. Rinsho Shinkeigaku 41(12):1083–1086

    PubMed  CAS  Google Scholar 

  17. Pilato F et al (2009) Unaffected motor cortex remodeling after hemispherectomy in an epileptic cerebral palsy patient. A TMS and fMRI study. Epilepsy Res 85(2–3):243–251

    Article  PubMed  Google Scholar 

  18. Liebetanz D et al (2006) After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression. Neurosci Lett 398(1–2):85–90

    Article  PubMed  CAS  Google Scholar 

  19. Fritsch B et al (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66(2):198–204

    Article  PubMed  CAS  Google Scholar 

  20. Di Lazzaro V et al (2010) The effects of motor cortex rTMS on corticospinal descending activity. Clin Neurophysiol 121(4):464–473

    Article  PubMed  Google Scholar 

  21. Hoogendam JM, Ramakers GM, Di Lazzaro V (2010) Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3(2):95–118

    Article  PubMed  Google Scholar 

  22. Nitsche MA et al (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553(Pt 1):293–301

    Article  PubMed  CAS  Google Scholar 

  23. Di Lazzaro V et al (2002) Direct demonstration of the effects of repetitive transcranial magnetic stimulation on the excitability of the human motor cortex. Exp Brain Res 144(4):549–553

    Article  PubMed  Google Scholar 

  24. Lefaucheur JP (2009) Methods of therapeutic cortical stimulation. Neurophysiol Clin 39(1):1–14

    Article  PubMed  Google Scholar 

  25. Reis J et al (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A 106(5):1590–1595

    Article  PubMed  CAS  Google Scholar 

  26. Filipovic SR et al (2009) Repetitive transcranial magnetic stimulation for levodopa-induced dyskinesias in Parkinson's disease. Mov Disord 24(2):246–253

    Article  PubMed  Google Scholar 

  27. Hamada M, Ugawa Y, Tsuji S (2008) High-frequency rTMS over the supplementary motor area for treatment of Parkinson's disease. Mov Disord 23(11):1524–1531

    Article  PubMed  Google Scholar 

  28. Lorenzano C et al (2006) Motor cortical excitability studied with repetitive transcranial magnetic stimulation in patients with Huntington's disease. Clin Neurophysiol 117(8):1677–1681

    Article  PubMed  CAS  Google Scholar 

  29. Benninger DH et al (2010) Transcranial direct current stimulation for the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry 81(10):1105–1111

    Article  PubMed  Google Scholar 

  30. Di Lazzaro V et al (2006) Direct demonstration that repetitive transcranial magnetic stimulation can enhance corticospinal excitability in stroke. Stroke 37(11):2850–2853

    Article  PubMed  Google Scholar 

  31. Gross M et al (2007) Has repetitive transcranial magnetic stimulation (rTMS) treatment for depression improved? A systematic review and meta-analysis comparing the recent vs. the earlier rTMS studies. Acta Psychiatr Scand 116(3):165–173

    Article  PubMed  CAS  Google Scholar 

  32. Freitas C, Fregni F, Pascual-Leone A (2009) Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr Res 108(1–3):11–24

    Article  PubMed  Google Scholar 

  33. Suppa A et al (2011) Lack of LTP-like plasticity in primary motor cortex in Parkinson's disease. Exp Neurol 227(2):296–301

    Article  PubMed  CAS  Google Scholar 

  34. Freitas C, Mondragon-Llorca H, Pascual-Leone A (2011) Noninvasive brain stimulation in Alzheimer's disease: systematic review and perspectives for the future. Exp Gerontol 46(8):611–627

    PubMed  Google Scholar 

  35. Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89(10):4363–4367

    Article  PubMed  CAS  Google Scholar 

  36. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107

    Article  PubMed  CAS  Google Scholar 

  37. Di Lazzaro V, Ziemann U, Lemon RN (2008) State of the art: physiology of transcranial motor cortex stimulation. Brain Stimul 1(4):345–362

    Article  PubMed  Google Scholar 

  38. Inghilleri M et al (2004) Ovarian hormones and cortical excitability. An rTMS study in humans. Clin Neurophysiol 115(5):1063–1068

    Article  PubMed  CAS  Google Scholar 

  39. Cheeran B et al (2008) A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol 586(Pt 23):5717–5725

    Article  PubMed  CAS  Google Scholar 

  40. Di Lazzaro V et al (2005) Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol 569(Pt 1):315–323

    Article  PubMed  Google Scholar 

  41. Di Lazzaro V et al (2003) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease: evidence of impaired glutamatergic neurotransmission? Ann Neurol 53(6):824, author reply 824-5

    Article  PubMed  Google Scholar 

  42. Chen R et al (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48(5):1398–1403

    Article  PubMed  CAS  Google Scholar 

  43. Huang YZ et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45(2):201–206

    Article  PubMed  CAS  Google Scholar 

  44. Lang N et al (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22(2):495–504

    Article  PubMed  Google Scholar 

  45. Bindman LJ, Lippold OC, Redfearn JW (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 172:369–382

    PubMed  CAS  Google Scholar 

  46. Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28:166–185

    PubMed  CAS  Google Scholar 

  47. Boggio PS et al (2009) Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry 80(4):444–447

    Article  PubMed  CAS  Google Scholar 

  48. Ferrucci R et al (2008) Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71(7):493–498

    Article  PubMed  CAS  Google Scholar 

  49. Ranieri F et al (2012) Modulation of Ltp at rat hippocampal Ca3-Ca1 synapses by direct current stimulation. J Neurophysiol 2012 Apr;107(7):1868–80

    Google Scholar 

  50. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    PubMed  CAS  Google Scholar 

  51. Mori F et al (2011) Genetic variants of the NMDA receptor influence cortical excitability and plasticity in humans. J Neurophysiol 106(4):1637–1643

    Article  PubMed  CAS  Google Scholar 

  52. Antal A et al (2010) Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimul 3(4):230–237

    Article  PubMed  Google Scholar 

  53. Liebetanz D et al (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125(Pt 10):2238–2247

    Article  PubMed  Google Scholar 

  54. Di Lazzaro V et al (2010) Long-term motor cortex stimulation for amyotrophic lateral sclerosis. Brain Stimul 3(1):22–27

    Article  PubMed  Google Scholar 

  55. Bentwich J et al (2011) Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: a proof of concept study. J Neural Transm 118(3):463–471

    Article  PubMed  CAS  Google Scholar 

  56. Cotelli M et al (2011) Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry 82(7):794–797

    Article  PubMed  Google Scholar 

  57. Cotelli M et al (2006) Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol 63(11):1602–1604

    Article  PubMed  Google Scholar 

  58. Cotelli M et al (2008) Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol 15(12):1286–1292

    Article  PubMed  CAS  Google Scholar 

  59. Cotelli M et al (2010) Action and object naming in physiological aging: an rTMS study. Front Aging Neurosci 2:151

    PubMed  Google Scholar 

  60. Strafella AP, Vanderwerf Y, Sadikot AF (2004) Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur J Neurosci 20(8):2245–2249

    Article  PubMed  Google Scholar 

  61. Gruner U et al (2010) 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson's disease: effects on bradykinesia of arm and hand. J Neural Transm 117(2):207–216

    Article  PubMed  Google Scholar 

  62. Filipovic SR, Rothwell JC, Bhatia K (2010) Low-frequency repetitive transcranial magnetic stimulation and off-phase motor symptoms in Parkinson's disease. J Neurol Sci 291(1–2):1–4

    Article  PubMed  Google Scholar 

  63. Hamada M, Ugawa Y, Tsuji S (2009) High-frequency rTMS over the supplementary motor area improves bradykinesia in Parkinson's disease: subanalysis of double-blind sham-controlled study. J Neurol Sci 287(1–2):143–146

    Article  PubMed  Google Scholar 

  64. Williams JA, Imamura M, Fregni F (2009) Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine. J Rehabil Med 41(5):305–311

    Article  PubMed  Google Scholar 

  65. Lomarev MP et al (2006) Placebo-controlled study of rTMS for the treatment of Parkinson's disease. Mov Disord 21(3):325–331

    Article  PubMed  Google Scholar 

  66. Fregni F et al (2006) Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease. Mov Disord 21(10):1693–1702

    Article  PubMed  Google Scholar 

  67. Tunez I et al (2006) Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington's disease. J Neurochem 97(3):619–630

    Article  PubMed  CAS  Google Scholar 

  68. Schippling S et al (2009) Abnormal motor cortex excitability in preclinical and very early Huntington's disease. Biol Psychiatry 65(11):959–965

    Article  PubMed  Google Scholar 

  69. Oh SY, Kim YK (2011) Adjunctive treatment of bimodal repetitive transcranial magnetic stimulation (rTMS) in pharmacologically non-responsive patients with schizophrenia: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 35(8):1938–1943

    Article  PubMed  Google Scholar 

  70. Barr MS et al (2011) The effect of repetitive transcranial magnetic stimulation on gamma oscillatory activity in schizophrenia. PLoS One 6(7):e22627

    Article  PubMed  CAS  Google Scholar 

  71. Barr MS et al. (2011) A randomized controlled trial of sequentially bilateral prefrontal cortex repetitive transcranial magnetic stimulation in the treatment of negative symptoms in schizophrenia. Brain Stimul. doi:10.1016/j.brs.2011.06.003

  72. Dlabac-de Lange JJ, Knegtering R, Aleman A (2010) Repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: review and meta-analysis. J Clin Psychiatry 71(4):411–418

    Article  PubMed  Google Scholar 

  73. Fox SH et al (2011) The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson's disease. Mov Disord 26(Suppl 3):S2–S41

    Article  PubMed  Google Scholar 

  74. Ehrnhoefer DE, Wong BK, Hayden MR (2011) Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development. Nat Rev Drug Discov 10(11):853–867

    Article  PubMed  CAS  Google Scholar 

  75. Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10(3):209–219

    Article  PubMed  CAS  Google Scholar 

  76. Ahmed MA et al (2012) Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neurol 259(1):83–92

    Article  PubMed  Google Scholar 

  77. Inghilleri M et al (2006) Altered response to rTMS in patients with Alzheimer's disease. Clin Neurophysiol 117(1):103–109

    Article  PubMed  CAS  Google Scholar 

  78. Rossi S et al (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039

    Article  PubMed  Google Scholar 

  79. Ilmoniemi RJ et al (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8(16):3537–3540

    Article  PubMed  CAS  Google Scholar 

  80. Julkunen P et al (2011) Combining transcranial magnetic stimulation and electroencephalography may contribute to assess the severity of Alzheimer's disease. Int J Alzheimers Dis 2011:654794

    PubMed  Google Scholar 

  81. Julkunen P et al (2008) Navigated TMS combined with EEG in mild cognitive impairment and Alzheimer's disease: a pilot study. J Neurosci Methods 172(2):270–276

    Article  PubMed  Google Scholar 

  82. Koch G et al (2011) Altered dopamine modulation of LTD-like plasticity in Alzheimer's disease patients. Clin Neurophysiol 122(4):703–707

    Article  PubMed  CAS  Google Scholar 

  83. Filipovic SR, Rothwell JC, Bhatia K (2010) Slow (1 Hz) repetitive transcranial magnetic stimulation (rTMS) induces a sustained change in cortical excitability in patients with Parkinson's disease. Clin Neurophysiol 121(7):1129–1137

    Article  PubMed  Google Scholar 

  84. Koch G et al (2009) Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology 73(2):113–119

    Article  PubMed  CAS  Google Scholar 

  85. Sedlackova S et al (2009) Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson's disease. J Neural Transm 116(9):1093–1101

    Article  PubMed  Google Scholar 

  86. Benninger DH et al (2009) Safety study of 50 Hz repetitive transcranial magnetic stimulation in patients with Parkinson's disease. Clin Neurophysiol 120(4):809–815

    Article  PubMed  Google Scholar 

  87. van Dijk KD et al (2009) Beneficial effect of transcranial magnetic stimulation on sleep in Parkinson's disease. Mov Disord 24(6):878–884

    Article  PubMed  Google Scholar 

  88. Baumer T et al (2009) Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson's disease. Mov Disord 24(5):672–676

    Article  PubMed  Google Scholar 

  89. Brusa L et al (2009) Effects of inhibitory rTMS on bladder function in Parkinson's disease patients. Mov Disord 24(3):445–448

    Article  PubMed  Google Scholar 

  90. Furukawa T et al (2009) Effects of low-frequency repetitive transcranial magnetic stimulation in Parkinson's disease. Tokai J Exp Clin Med 34(3):63–71

    PubMed  Google Scholar 

  91. Kim JY et al (2008) Therapeutic effect of repetitive transcranial magnetic stimulation in Parkinson's disease: analysis of [11 C] raclopride PET study. Mov Disord 23(2):207–211

    Article  PubMed  Google Scholar 

  92. Fierro B et al (2008) Motor intracortical inhibition in PD: L-DOPA modulation of high-frequency rTMS effects. Exp Brain Res 184(4):521–528

    Article  PubMed  Google Scholar 

  93. Stanford AD et al (2011) High-frequency prefrontal repetitive transcranial magnetic stimulation for the negative symptoms of schizophrenia: a case series. J ECT 27(1):11–17

    Article  PubMed  Google Scholar 

  94. Lai IC et al (2010) Transcranial magnetic stimulation for auditory hallucination in severe schizophrenia: partial efficacy and acute elevation of sympathetic modulation. Psychiatry Clin Neurosci 64(3):333–335

    Article  PubMed  Google Scholar 

  95. Cordes J et al (2010) Effects of 10 Hz repetitive transcranial magnetic stimulation (rTMS) on clinical global impression in chronic schizophrenia. Psychiatry Res 177(1–2):32–36

    Article  PubMed  Google Scholar 

  96. Vercammen A et al (2010) Functional connectivity of the temporo-parietal region in schizophrenia: effects of rTMS treatment of auditory hallucinations. J Psychiatr Res 44(11):725–731

    Article  PubMed  Google Scholar 

  97. Loo CK et al (2010) A sham-controlled trial of left and right temporal rTMS for the treatment of auditory hallucinations. Psychol Med 40(4):541–546

    Article  PubMed  CAS  Google Scholar 

  98. Vercammen A et al (2009) Effects of bilateral repetitive transcranial magnetic stimulation on treatment resistant auditory-verbal hallucinations in schizophrenia: a randomized controlled trial. Schizophr Res 114(1–3):172–179

    Article  PubMed  Google Scholar 

  99. Montagne-Larmurier A et al (2009) Two-day treatment of auditory hallucinations by high frequency rTMS guided by cerebral imaging: a 6 month follow-up pilot study. Schizophr Res 113(1):77–83

    Article  PubMed  CAS  Google Scholar 

  100. Boggio PS et al (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. J Neurol Sci 249(1):31–38

    Article  PubMed  Google Scholar 

  101. Hasan A et al (2012) Abnormal bihemispheric responses in schizophrenia patients following cathodal transcranial direct stimulation. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-012-0298-7

  102. Mattai A et al (2011) Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia. Brain Stimul 4(4):275–280

    Article  PubMed  Google Scholar 

  103. Vercammen A et al (2011) Transcranial direct current stimulation influences probabilistic association learning in schizophrenia. Schizophr Res 131(1–3):198–205

    Article  PubMed  Google Scholar 

  104. Hasan A et al (2011) Impaired long-term depression in schizophrenia: a cathodal tDCS pilot study. Brain Stimul. doi:10.1016/j.brs.2011.08.004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pilato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilato, F., Profice, P., Ranieri, F. et al. Synaptic Plasticity in Neurodegenerative Diseases Evaluated and Modulated by In Vivo Neurophysiological Techniques. Mol Neurobiol 46, 563–571 (2012). https://doi.org/10.1007/s12035-012-8302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8302-9

Keywords

Navigation