Skip to main content
Log in

Genotypic Association of the DAOA Gene with Resting-State Brain Activity in Major Depression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Compelling evidence suggests that the glutamatergic system may contribute to the pathophysiology of major depression (MDD). While the D-amino acid oxidase activator (DAOA) gene can affect glutamatergic function, its genetic associations with MDD and abnormal resting-state brain activity have yet to be elucidated. A total of 488 patients with MDD and 480 controls were recruited to examine MDD association for the DAOA gene in a Chinese population, of whom 53 medication-free patients and 46 well-matched controls underwent resting-state functional magnetic resonance imaging for regional homogeneity (ReHo) analysis. The differences in ReHo between genotypes of interest were initially tested by the Student’s t test, and the 2 × 2 (genotypes × disease status) ANOVA was then performed to identify the main effects of genotypes, disease status, and their interactions in MDD. Allelic association of the DAOA gene with MDD was observed for rs2391191, rs3918341, and rs778294 and haplotypic association for 2- and 3-SNP haplotypes. Six clusters in the cerebellum, right middle frontal gyrus and left middle temporal gyrus showed genotypic association between altered ReHo and rs2391191. The main effects of rs2391191 genotypes were found in the right culmen and right middle frontal gyrus. The left uvula and left middle temporal gyrus showed a genotypes × disease status interaction. Our results suggest that the DAOA gene may confer genetic risk of MDD. Genotypic effect of rs2391191 and its interaction with disease status may contribute to the altered ReHo in patients with MDD. Glutamatergic modulation may play an important role in alteration of the resting-state brain activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murray CJ, Lopez AD (1996) Evidence-based health policy—lessons from the Global Burden of Disease Study. Science 274(5288):740–743

    Article  PubMed  CAS  Google Scholar 

  2. Sumegi A (2008) Domino principle—monoamines in bottom-view. Neuropsychopharmacol Hung 10(3):131–140

    PubMed  Google Scholar 

  3. Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7(2):137–151. doi:10.1038/nrn1846

    Article  PubMed  CAS  Google Scholar 

  4. Sen S, Sanacora G (2008) Major depression: emerging therapeutics. Mt Sinai J Med 75(3):204–225. doi:10.1002/msj.20043

    Article  PubMed  Google Scholar 

  5. Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F (2000) Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 47(4):305–313. doi:S0006-3223(99)00159-6

    Article  PubMed  CAS  Google Scholar 

  6. Li CX, Wang Y, Gao H, Pan WJ, Xiang Y, Huang M, Lei H (2008) Cerebral metabolic changes in a depression-like rat model of chronic forced swimming studied by ex vivo high resolution 1H magnetic resonance spectroscopy. Neurochem Res 33(11):2342–2349. doi:10.1007/s11064-008-9739-0

    Article  PubMed  CAS  Google Scholar 

  7. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354. doi:S0006-3223(99)00230-9

    Article  PubMed  CAS  Google Scholar 

  8. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D (2002) Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 99(21):13675–13680. doi:10.1073/pnas.182412499

    Article  PubMed  CAS  Google Scholar 

  9. Mustafa AK, Kim PM, Snyder SH (2004) d-serine as a putative glial neurotransmitter. Neuron Glia Biol 1(3):275–281. doi:10.1017/S1740925X05000141

    Article  PubMed  Google Scholar 

  10. Panatier A, Gentles SJ, Bourque CW, Oliet SH (2006) Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. J Physiol 573(Pt 3):711–721. doi:10.1113/jphysiol.2006.109447

    Article  PubMed  CAS  Google Scholar 

  11. Sacchi S, Bernasconi M, Martineau M, Mothet JP, Ruzzene M, Pilone MS, Pollegioni L, Molla G (2008) pLG72 modulates intracellular d-serine levels through its interaction with d-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 283(32):22244–22256. doi:10.1074/jbc.M709153200

    Article  PubMed  CAS  Google Scholar 

  12. Schell MJ, Molliver ME, Snyder SH (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92(9):3948–3952

    Article  PubMed  CAS  Google Scholar 

  13. Corvin A, McGhee KA, Murphy K, Donohoe G, Nangle JM, Schwaiger S, Kenny N, Clarke S, Meagher D, Quinn J, Scully P, Baldwin P, Browne D, Walsh C, Waddington JL, Morris DW, Gill M (2007) Evidence for association and epistasis at the DAOA/G30 and d-amino acid oxidase loci in an Irish schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet 144B(7):949–953. doi:10.1002/ajmg.b.30452

    Article  PubMed  CAS  Google Scholar 

  14. Kvajo M, Dhilla A, Swor DE, Karayiorgou M, Gogos JA (2008) Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol Psychiatry 13(7):685–696. doi:10.1038/sj.mp. 4002052

    Article  PubMed  CAS  Google Scholar 

  15. Bearden CE, Freimer NB (2006) Endophenotypes for psychiatric disorders: ready for primetime? Trends Genet 22(6):306–313. doi:10.1016/j.tig.2006.04.004

    Article  PubMed  CAS  Google Scholar 

  16. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682. doi:10.1073/pnas.98.2.676

    Article  PubMed  CAS  Google Scholar 

  17. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. NeuroImage 22(1):394–400. doi:10.1016/j.neuroimage.2003.12.030

    Article  PubMed  Google Scholar 

  18. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, Wang YF (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91. doi:10.1016/j.braindev.2006.07.002

    Article  PubMed  Google Scholar 

  19. Tian L, Jiang T, Wang Y, Zang Y, He Y, Liang M, Sui M, Cao Q, Hu S, Peng M, Zhuo Y (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 400(1–2):39–43. doi:10.1016/j.neulet.2006.02.022

    Article  PubMed  CAS  Google Scholar 

  20. Liu Y, Wang K, Yu C, He Y, Zhou Y, Liang M, Wang L, Jiang T (2008) Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: a review of resting-state fMRI studies. Neuropsychologia 46(6):1648–1656. doi:10.1016/j.neuropsychologia.2008.01.027

    Article  PubMed  Google Scholar 

  21. Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:8. doi:10.3389/fnsys.2010.00008

    PubMed  Google Scholar 

  22. He Y, Zang YF, Jiang TZ, Lu YL, Weng XC (2004) Detection of functional networks in the resting brain. Biomed Imaging Nano Macro IEEE Int Symp 1:980–983. doi:10.1109/ISBI.2004.1398704

    Google Scholar 

  23. Margulies DS, Bottger J, Long X, Lv Y, Kelly C, Schafer A, Goldhahn D, Abbushi A, Milham MP, Lohmann G, Villringer A (2010) Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA 23(5–6):289–307. doi:10.1007/s10334-010-0228-5

    Article  PubMed  Google Scholar 

  24. Liu H, Liu Z, Liang M, Hao Y, Tan L, Kuang F, Yi Y, Xu L, Jiang T (2006) Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport 17(1):19–22. doi:00001756-200601230-00005

    Article  PubMed  CAS  Google Scholar 

  25. Cao Q, Zang Y, Sun L, Sui M, Long X, Zou Q, Wang Y (2006) Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 17(10):1033–1036. doi:10.1097/01.wnr.0000224769.92454.5d

    Article  PubMed  Google Scholar 

  26. American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders, 4th ed. American Psychiatric Press: Washington, DC

  27. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229. doi:10.1126/science.1069424

    Article  PubMed  CAS  Google Scholar 

  28. Donohoe G, Morris DW, Robertson IH, McGhee KA, Murphy K, Kenny N, Clarke S, Gill M, Corvin AP (2007) DAOA ARG30LYS and verbal memory function in schizophrenia. Mol Psychiatry 12(9):795–796. doi:10.1038/sj.mp. 4002026

    Article  PubMed  CAS  Google Scholar 

  29. Craddock N, Owen MJ (2005) The beginning of the end for the Kraepelinian dichotomy. Br J Psychiatry 186:364–366. doi:10.1192/bjp. 186.5.364

    Article  PubMed  Google Scholar 

  30. Gomez L, Wigg K, Feng Y, Kiss E, Kapornai K, Tamas Z, Mayer L, Baji I, Daroczi G, Benak I, Kothencne VO, Dombovari E, Kaczvinszk E, Besnyo M, Gadoros J, King N, Szekely J, Kovacs M, Vetro A, Kennedy JL, Barr CL (2009) G72/G30 (DAOA) and juvenile-onset mood disorders. Am J Med Genet B Neuropsychiatr Genet 150B(7):1007–1012. doi:10.1002/ajmg.b.30904

    Article  PubMed  CAS  Google Scholar 

  31. Gawlik M, Wehner I, Mende M, Jung S, Pfuhlmann B, Knapp M, Stober G (2010) The DAOA/G30 locus and affective disorders: haplotype based association study in a polydiagnostic approach. BMC Psychiatry 10:59. doi:10.1186/1471-244X-10-59

    Article  PubMed  Google Scholar 

  32. Grigoroiu-Serbanescu M, Herms S, Diaconu CC, Jamra RA, Meier S, Bleotu C, Neagu AI, Prelipceanu D, Sima D, Gherghel M, Mihailescu R, Rietschel M, Nothen MM, Cichon S, Muhleisen TW (2010) Possible association of different G72/G30 SNPs with mood episodes and persecutory delusions in bipolar I Romanian patients. Prog Neuropsychopharmacol Biol Psychiatry 34(4):657–663. doi:10.1016/j.pnpbp. 2010.03.008

    Article  PubMed  CAS  Google Scholar 

  33. Nicodemus KK, Kolachana BS, Vakkalanka R, Straub RE, Giegling I, Egan MF, Rujescu D, Weinberger DR (2007) Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Hum Genet 120(6):889–906. doi:10.1007/s00439-006-0257-3

    Article  PubMed  CAS  Google Scholar 

  34. Shin HD, Park BL, Kim EM, Lee SO, Cheong HS, Lee CH, Kim SG, Sohn JW, Park CS, Kim JW, Kim BH, Kim IY, Choi IG, Woo SI (2007) Association analysis of G72/G30 polymorphisms with schizophrenia in the Korean population. Schizophr Res 96(1–3):119–124. doi:10.1016/j.schres.2007.05.004

    Article  PubMed  Google Scholar 

  35. Schultz CC, Nenadic I, Koch K, Wagner G, Roebel M, Schachtzabel C, Muhleisen TW, Nothen MM, Cichon S, Deufel T, Kiehntopf M, Rietschel M, Reichenbach JR, Sauer H, Schlosser RG (2011) Reduced cortical thickness is associated with the glutamatergic regulatory gene risk variant DAOA Arg30Lys in schizophrenia. Neuropsychopharmacology 36(8):1747–1753. doi:10.1038/npp. 2011.56

    Article  PubMed  CAS  Google Scholar 

  36. Soronen P, Silander K, Antila M, Palo OM, Tuulio-Henriksson A, Kieseppa T, Ellonen P, Wedenoja J, Turunen JA, Pietilainen OP, Hennah W, Lonnqvist J, Peltonen L, Partonen T, Paunio T (2008) Association of a nonsynonymous variant of DAOA with visuospatial ability in a bipolar family sample. Biol Psychiatry 64(5):438–442. doi:10.1016/j.biopsych.2008.03.028

    Article  PubMed  Google Scholar 

  37. Shulman RG, Hyder F, Rothman DL (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci U S A 98(11):6417–6422. doi:10.1073/pnas.101129298

    Article  PubMed  CAS  Google Scholar 

  38. Liao W, Chen H, Feng Y, Mantini D, Gentili C, Pan Z, Ding J, Duan X, Qiu C, Lui S, Gong Q, Zhang W (2010) Selective aberrant functional connectivity of resting state networks in social anxiety disorder. NeuroImage 52(4):1549–1558. doi:10.1016/j.neuroimage.2010.05.010

    Article  PubMed  Google Scholar 

  39. Greicius MD, Kiviniemi V, Tervonen O, Vainionpaa V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29(7):839–847. doi:10.1002/hbm.20537

    Article  PubMed  Google Scholar 

  40. Lorenzi M, Beltramello A, Mercuri NB, Canu E, Zoccatelli G, Pizzini FB, Alessandrini F, Cotelli M, Rosini S, Costardi D, Caltagirone C, Frisoni GB (2011) Effect of memantine on resting state default mode network activity in Alzheimer's disease. Drugs Aging 28(3):205–217. doi:10.2165/11586440-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  41. Lyoo IK, Yoon SJ, Musen G, Simonson DC, Weinger K, Bolo N, Ryan CM, Kim JE, Renshaw PF, Jacobson AM (2009) Altered prefrontal glutamate–glutamine–gamma-aminobutyric acid levels and relation to low cognitive performance and depressive symptoms in type 1 diabetes mellitus. Arch Gen Psychiatry 66(8):878–887. doi:10.1001/archgenpsychiatry.2009.86

    Article  PubMed  CAS  Google Scholar 

  42. Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongur D, Cohen BM (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 35(10):2049–2059. doi:10.1038/npp. 2010.74

    Article  PubMed  CAS  Google Scholar 

  43. Otte DM, Sommersberg B, Kudin A, Guerrero C, Albayram O, Filiou MD, Frisch P, Yilmaz O, Drews E, Turck CW, Bilkei-Gorzo A, Kunz WS, Beck H, Zimmer A (2011) N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice. Neuropsychopharmacology 36(11):2233–2243. doi:10.1038/npp. 2011.109

    Article  PubMed  CAS  Google Scholar 

  44. Nandhu MS, Paul J, Kuruvila KP, Abraham PM, Antony S, Paulose CS (2011) Glutamate and NMDA receptors activation leads to cerebellar dysfunction and impaired motor coordination in unilateral 6-hydroxydopamine lesioned Parkinson's rat: functional recovery with bone marrow cells, serotonin and GABA. Mol Cell Biochem 353(1–2):47–57. doi:10.1007/s11010-011-0773-x

    Article  PubMed  CAS  Google Scholar 

  45. Rapoport M, van Reekum R, Mayberg H (2000) The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci 12(2):193–198

    Article  PubMed  CAS  Google Scholar 

  46. Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, Cao X, Zhang K, Du C (2010) Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res 182(3):211–215. doi:10.1016/j.pscychresns.2010.03.004

    Article  PubMed  Google Scholar 

  47. Otte DM, Bilkei-Gorzo A, Filiou MD, Turck CW, Yilmaz O, Holst MI, Schilling K, Abou-Jamra R, Schumacher J, Benzel I, Kunz WS, Beck H, Zimmer A (2009) Behavioral changes in G72/G30 transgenic mice. Eur Neuropsychopharmacol 19(5):339–348. doi:10.1016/j.euroneuro.2008.12.009

    Article  PubMed  CAS  Google Scholar 

  48. Langenecker SA, Kennedy SE, Guidotti LM, Briceno EM, Own LS, Hooven T, Young EA, Akil H, Noll DC, Zubieta JK (2007) Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biol Psychiatry 62(11):1272–1280. doi:10.1016/j.biopsych.2007.02.019

    Article  PubMed  Google Scholar 

  49. Siok WT, Perfetti CA, Jin Z, Tan LH (2004) Biological abnormality of impaired reading is constrained by culture. Nature 431(7004):71–76. doi:10.1038/nature02865

    Article  PubMed  CAS  Google Scholar 

  50. Krug A, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stocker T, Shah NJ, Nothen MM, Georgi A, Strohmaier J, Rietschel M, Kircher T (2011) Genetic variation in G72 correlates with brain activation in the right middle temporal gyrus in a verbal fluency task in healthy individuals. Hum Brain Mapp 32(1):118–126. doi:10.1002/hbm.21005

    Article  PubMed  Google Scholar 

  51. Li D, Huang X, Wu Q, Zou K, Sun X, Gong Q (2010) Brain functions in major depressive disorder: a resting-state functional magnetic resonance imaging study. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 27(1):16–19

    PubMed  Google Scholar 

  52. De Kloet ER, Reul JM (1987) Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 12(2):83–105

    Article  PubMed  Google Scholar 

  53. Aston C, Jiang L, Sokolov BP (2005) Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 10(3):309–322. doi:10.1038/sj.mp. 4001565

    Article  PubMed  CAS  Google Scholar 

  54. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64(2):193–200. doi:10.1001/archpsyc.64.2.193

    Article  PubMed  CAS  Google Scholar 

  55. Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U, Schnepf B, Boeker H, Boesiger P, Northoff G (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 66(5):478–486. doi:10.1001/archgenpsychiatry.2009.39

    Article  PubMed  CAS  Google Scholar 

  56. Kiss JP, Szasz BK, Fodor L, Mike A, Lenkey N, Kurko D, Nagy J, Vizi ES (2012) GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine. Neurochem Int 60(2):170–176. doi:10.1016/j.neuint.2011.12.005

    Article  PubMed  CAS  Google Scholar 

  57. Barbon A, Caracciolo L, Orlandi C, Musazzi L, Mallei A, La Via L, Bonini D, Mora C, Tardito D, Gennarelli M, Racagni G, Popoli M, Barlati S (2011) Chronic antidepressant treatments induce a time-dependent up-regulation of AMPA receptor subunit protein levels. Neurochem Int 59(6):896–905. doi:10.1016/j.neuint.2011.07.013

    Article  PubMed  CAS  Google Scholar 

  58. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10(12):1515–1517. doi:10.1038/nn2001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank all the subjects for their participation in this study. We also thank the Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China and Department of MRI, Shanxi Provincial People's Hospital, Taiyuan, China, for their help with recruitments of subjects and sample collection.

Financial Disclosure

The work was supported by the research grants from the National Basic Research Program of China (2010CB529603and 2012CB517902), the National Natural Science Foundation of China (30971001, 30971054, 31021091, and 81171290), the Beijing Natural Science Foundation (7102109) and the Fok Ying Tong Education Foundation (121024). The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript. All the authors listed have read through the manuscript, approved for publication, and declared no conflict of interest. Jun Chen and Yong Xu had full access to all of the data in the study and took their responsibility for the integrity of the data and the accuracy of data analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kerang Zhang or Qi Xu.

Additional information

Jun Chen and Yong Xu contributed equally to this study.

This work was performed at the National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Xu, Y., Zhang, J. et al. Genotypic Association of the DAOA Gene with Resting-State Brain Activity in Major Depression. Mol Neurobiol 46, 361–373 (2012). https://doi.org/10.1007/s12035-012-8294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8294-5

Keywords

Navigation