Skip to main content

Advertisement

Log in

Calcium-Dependent Networks in Dopamine–Glutamate Interaction: The Role of Postsynaptic Scaffolding Proteins

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dopamine and glutamate systems are both involved in cognitive, behavioral, and motor processes. Dysfunction of dopamine–glutamate interplay has been suggested in several psychotic diseases, above all in schizophrenia, for which there exists a need for novel medications. Intracellular calcium-dependent transduction pathways are key determinants of dopamine–glutamate interactions, which take place mainly, albeit not exclusively, in the postsynaptic density (PSD), a highly specialized postsynaptic ultrastructure. Stimulation of dopamine and glutamate receptors modulates the gene expression and the function of specific PSD proteins, the “scaffolding” proteins (Homer, Shank, and PSD95), belonging to a complex Ca2+-regulated network that integrates and converges dopamine and glutamate signaling to appropriate nuclear targets. Dysfunction of scaffolding proteins leads to severe impairment of Ca2+-dependent signaling, which may underlie the dopamine–glutamate aberrations putatively implicated in the pathogenesis of psychotic disorders. Antipsychotic therapy has been demonstrated to directly and indirectly affect the neuronal Ca2+-dependent pathways through the modulation of PSD scaffolding proteins, such as Homer, therefore influencing both dopaminergic and glutamatergic functions and enforcing Ca2+-mediated long-term synaptic changes. In this review, we will discuss the role of PSD scaffolding proteins in routing Ca2+-dependent signals to the nucleus. In particular, we will address the implication of PSD scaffolding proteins in the intracellular connections between dopamine and glutamate pathways, which involve both Ca2+-dependent and Ca2+-independent mechanisms. Finally, we will discuss how new strategies for the treatment of psychosis aim at developing antipsychotics that may impact both glutamate and dopamine signaling, and what should be the possible role of PSD scaffolding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    PubMed  CAS  Google Scholar 

  2. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    PubMed  CAS  Google Scholar 

  3. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    PubMed  CAS  Google Scholar 

  4. Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34(1):1–26

    PubMed  CAS  Google Scholar 

  5. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60(7-8):1017–1041

    PubMed  CAS  Google Scholar 

  6. Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33(8):1351–1365

    PubMed  Google Scholar 

  7. Yao WD, Spealman RD, Zhang J (2008) Dopaminergic signaling in dendritic spines. Biochem Pharmacol 75(11):2055–2069

    PubMed  CAS  Google Scholar 

  8. Oliveira AM, Bading H (2011) Calcium signaling in cognition and aging-dependent cognitive decline. Biofactors 37(3):168–174

    PubMed  CAS  Google Scholar 

  9. de Bartolomeis A, Iasevoli F (2003) The Homer family and the signal transduction system at glutamatergic postsynaptic density: potential role in behavior and pharmacotherapy. Psychopharmacol Bull 37(3):51–83

    PubMed  Google Scholar 

  10. Simeone A, Di Salvio M, Di Giovannantonio LG, Acampora D, Omodei D, Tomasetti C (2011) The role of otx2 in adult mesencephalic–diencephalic dopaminergic neurons. Mol Neurobiol 43(2):107–113

    PubMed  CAS  Google Scholar 

  11. Simeone A, Puelles E, Omodei D, Acampora D, Di Giovannantonio LG, Di Salvio M, Mancuso P, Tomasetti C (2011) Otx genes in neurogenesis of mesencephalic dopaminergic neurons. Dev Neurobiol 71(8):665–679

    PubMed  CAS  Google Scholar 

  12. Hoftman GD, Lewis DA (2011) Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull 37(3):493–503

    PubMed  Google Scholar 

  13. Hashimoto R, Tankou S, Takeda M, Sawa A (2007) Postsynaptic density: a key convergent site for schizophrenia susceptibility factors and possible target for drug development. Drugs Today (Barc) 43(9):645–654

    CAS  Google Scholar 

  14. Rao JS, Kellom M, Reese EA, Rapoport SI, Kim HW (2012) Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients. J Affect Disord 136(1-2):63–71

    PubMed  CAS  Google Scholar 

  15. Chen G, Henter ID, Manji HK (2010) Presynaptic glutamatergic dysfunction in bipolar disorder. Biol Psychiatry 67(11):1007–1009

    PubMed  Google Scholar 

  16. Tepper JM, Abercrombie ED, Bolam JP (2007) Basal ganglia macrocircuits. Prog Brain Res 160:3–7

    PubMed  CAS  Google Scholar 

  17. Del Arco A, Mora F (2008) Prefrontal cortex–nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav 90(2):226–235

    PubMed  Google Scholar 

  18. Cousins DA, Butts K, Young AH (2009) The role of dopamine in bipolar disorder. Bipolar Disord 11(8):787–806

    PubMed  CAS  Google Scholar 

  19. Stone JM, Morrison PD, Pilowsky LS (2007) Glutamate and dopamine dysregulation in schizophrenia—a synthesis and selective review. J Psychopharmacol 21(4):440–452

    PubMed  CAS  Google Scholar 

  20. Zarate C Jr, Machado-Vieira R, Henter I, Ibrahim L, Diazgranados N, Salvadore G (2010) Glutamatergic modulators: the future of treating mood disorders? Harv Rev Psychiatry 18(5):293–303

    PubMed  Google Scholar 

  21. Bondi C, Matthews M, Moghaddam B (2012) Glutamatergic animal models of schizophrenia. Curr Pharm Des 18:1593–1604

    Google Scholar 

  22. Schwartz TL, Sachdeva S, Stahl SM (2012) Genetic data supporting the NMDA glutamate receptor hypothesis for schizophrenia. Curr Pharm Des 18:1580–1592

    Google Scholar 

  23. Woo TU, Walsh JP, Benes FM (2004) Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 61(7):649–657

    PubMed  CAS  Google Scholar 

  24. Carr DB, Sesack SR (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol 369(1):1–15

    PubMed  CAS  Google Scholar 

  25. Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15(12):7821–7836

    PubMed  CAS  Google Scholar 

  26. de Almeida J, Mengod G (2010) D2 and D4 dopamine receptor mRNA distribution in pyramidal neurons and GABAergic subpopulations in monkey prefrontal cortex: implications for schizophrenia treatment. Neuroscience 170(4):1133–1139

    PubMed  Google Scholar 

  27. Cepeda C, Andre VM, Jocoy EL, Levine MS (2009) NMDA and dopamine: diverse mechanisms applied to interacting receptor systems. In: Van Dongen AM (ed) Biology of the NMDA receptor. CRC Press, Boca Raton (FL), Chapter 3

  28. Muly EC, Maddox M, Smith Y (2003) Distribution of mGluR1alpha and mGluR5 immunolabeling in primate prefrontal cortex. J Comp Neurol 467(4):521–535

    PubMed  CAS  Google Scholar 

  29. Tamaru Y, Nomura S, Mizuno N, Shigemoto R (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 106(3):481–503

    PubMed  CAS  Google Scholar 

  30. Vinson PN, Conn PJ (2012) Metabotropic glutamate receptors as therapeutic targets for schizophrenia. Neuropharmacology 62(3):1461–1472

    PubMed  CAS  Google Scholar 

  31. Muly EC 3rd, Szigeti K, Goldman-Rakic PS (1998) D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J Neurosci 18(24):10553–10565

    PubMed  CAS  Google Scholar 

  32. Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23(Suppl 3):S534–S547

    PubMed  Google Scholar 

  33. Tarazi FI, Baldessarini RJ (1999) Brain dopamine D(4) receptors: basic and clinical status. Int J Neuropsychopharmacol 2(1):41–58

    PubMed  CAS  Google Scholar 

  34. Tarazi FI, Baldessarini RJ (1999) Regional localization of dopamine and ionotropic glutamate receptor subtypes in striatolimbic brain regions. J Neurosci Res 55(4):401–410

    PubMed  CAS  Google Scholar 

  35. Tarazi FI, Campbell A, Yeghiayan SK, Baldessarini RJ (1998) Localization of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain: comparison of D1-, D2-, and D4-like receptors. Neuroscience 83(1):169–176

    PubMed  CAS  Google Scholar 

  36. Tarazi FI, Yeghiayan SK, Neumeyer JL, Baldessarini RJ (1998) Medial prefrontal cortical D2 and striatolimbic D4 dopamine receptors: common targets for typical and atypical antipsychotic drugs. Prog Neuropsychopharmacol Biol Psychiatry 22(4):693–707

    PubMed  CAS  Google Scholar 

  37. Paquet M, Smith Y (2003) Group I metabotropic glutamate receptors in the monkey striatum: subsynaptic association with glutamatergic and dopaminergic afferents. J Neurosci 23(20):7659–7669

    PubMed  CAS  Google Scholar 

  38. David HN, Ansseau M, Abraini JH (2005) Dopamine–glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of "intact" animals. Brain Res Brain Res Rev 50(2):336–360

    PubMed  CAS  Google Scholar 

  39. Del Arco A, Mora F (2009) Neurotransmitters and prefrontal cortex–limbic system interactions: implications for plasticity and psychiatric disorders. J Neural Transm 116(8):941–952

    PubMed  Google Scholar 

  40. Wickens JR (2009) Synaptic plasticity in the basal ganglia. Behav Brain Res 199(1):119–128

    PubMed  Google Scholar 

  41. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217

    PubMed  CAS  Google Scholar 

  42. Morgado-Bernal I (2011) Learning and memory consolidation: linking molecular and behavioral data. Neuroscience 176:12–19

    PubMed  CAS  Google Scholar 

  43. Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30(5):211–219

    PubMed  CAS  Google Scholar 

  44. Shiflett MW, Balleine BW (2011) Molecular substrates of action control in cortico-striatal circuits. Prog Neurobiol 95(1):1–13

    PubMed  CAS  Google Scholar 

  45. Okabe S (2007) Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 34(4):503–518

    PubMed  CAS  Google Scholar 

  46. Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847

    PubMed  CAS  Google Scholar 

  47. Foa L, Gasperini R (2009) Developmental roles for Homer: more than just a pretty scaffold. J Neurochem 108(1):1–10

    PubMed  CAS  Google Scholar 

  48. Zheng CY, Seabold GK, Horak M, Petralia RS (2011) MAGUKs, synaptic development, and synaptic plasticity. Neuroscientist 17(5):493–512

    PubMed  CAS  Google Scholar 

  49. Romero G, von Zastrow M, Friedman PA (2011) Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. Adv Pharmacol 62:279–314

    PubMed  CAS  Google Scholar 

  50. Ciruela F, Canela L, Burgueno J, Soriguera A, Cabello N, Canela EI, Casado V, Cortes A, Mallol J, Woods AS, Ferre S, Lluis C, Franco R (2005) Heptaspanning membrane receptors and cytoskeletal/scaffolding proteins: focus on adenosine, dopamine, and metabotropic glutamate receptor function. J Mol Neurosci 26(2-3):277–292

    PubMed  CAS  Google Scholar 

  51. de Bartolomeis A, Fiore G (2004) Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: implications for human behavior pathologies. Int Rev Neurobiol 59:221–254

    PubMed  Google Scholar 

  52. de Bartolomeis A, Fiore G, Iasevoli F (2005) Dopamine–glutamate interaction and antipsychotics mechanism of action: implication for new pharmacological strategies in psychosis. Curr Pharm Des 11(27):3561–3594

    PubMed  Google Scholar 

  53. Szumlinski KK, Dehoff MH, Kang SH, Frys KA, Lominac KD, Klugmann M, Rohrer J, Griffin W 3rd, Toda S, Champtiaux NP, Berry T, Tu JC, Shealy SE, During MJ, Middaugh LD, Worley PF, Kalivas PW (2004) Homer proteins regulate sensitivity to cocaine. Neuron 43(3):401–413

    PubMed  CAS  Google Scholar 

  54. Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwarz MK, Seeburg PH, Worley PF, Kalivas PW (2005) Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. Genes Brain Behav 4(5):273–288

    PubMed  CAS  Google Scholar 

  55. Wyneken U, Marengo JJ, Orrego F (2004) Electrophysiology and plasticity in isolated postsynaptic densities. Brain Res Brain Res Rev 47(1–3):54–70

    PubMed  CAS  Google Scholar 

  56. Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386(6622):284–288

    PubMed  CAS  Google Scholar 

  57. Kato A, Ozawa F, Saitoh Y, Fukazawa Y, Sugiyama H, Inokuchi K (1998) Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J Biol Chem 273(37):23969–23975

    PubMed  CAS  Google Scholar 

  58. Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21(4):707–716

    PubMed  CAS  Google Scholar 

  59. Sun J, Tadokoro S, Imanaka T, Murakami SD, Nakamura M, Kashiwada K, Ko J, Nishida W, Sobue K (1998) Isolation of PSD-Zip45, a novel Homer/vesl family protein containing leucine zipper motifs, from rat brain. FEBS Lett 437(3):304–308

    PubMed  CAS  Google Scholar 

  60. de Bartolomeis A, Aloj L, Ambesi-Impiombato A, Bravi D, Caraco C, Muscettola G, Barone P (2002) Acute administration of antipsychotics modulates Homer striatal gene expression differentially. Brain Res Mol Brain Res 98(1–2):124–129

    PubMed  Google Scholar 

  61. Bottai D, Guzowski JF, Schwarz MK, Kang SH, Xiao B, Lanahan A, Worley PF, Seeburg PH (2002) Synaptic activity-induced conversion of intronic to exonic sequence in Homer 1 immediate early gene expression. J Neurosci 22(1):167–175

    PubMed  CAS  Google Scholar 

  62. Hennou S, Kato A, Schneider EM, Lundstrom K, Gahwiler BH, Inokuchi K, Gerber U, Ehrengruber MU (2003) Homer-1a/Vesl-1S enhances hippocampal synaptic transmission. Eur J Neurosci 18(4):811–819

    PubMed  Google Scholar 

  63. Sala C, Roussignol G, Meldolesi J, Fagni L (2005) Key role of the postsynaptic density scaffold proteins Shank and Homer in the functional architecture of Ca2+ homeostasis at dendritic spines in hippocampal neurons. J Neurosci 25(18):4587–4592

    PubMed  CAS  Google Scholar 

  64. Xiao B, Tu JC, Worley PF (2000) Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol 10(3):370–374

    PubMed  CAS  Google Scholar 

  65. Hwang SY, Wei J, Westhoff JH, Duncan RS, Ozawa F, Volpe P, Inokuchi K, Koulen P (2003) Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling. Cell Calcium 34(2):177–184

    PubMed  CAS  Google Scholar 

  66. Kammermeier PJ, Xiao B, Tu JC, Worley PF, Ikeda SR (2000) Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J Neurosci 20(19):7238–7245

    PubMed  CAS  Google Scholar 

  67. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23(3):583–592

    PubMed  CAS  Google Scholar 

  68. Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21(4):717–726

    PubMed  CAS  Google Scholar 

  69. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114(6):777–789

    PubMed  CAS  Google Scholar 

  70. Abe H, Misaka T, Tateyama M, Kubo Y (2003) Effects of coexpression with Homer isoforms on the function of metabotropic glutamate receptor 1alpha. Mol Cell Neurosci 23(2):157–168

    PubMed  CAS  Google Scholar 

  71. Shiraishi Y, Mizutani A, Yuasa S, Mikoshiba K, Furuichi T (2003) Glutamate-induced declustering of post-synaptic adaptor protein Cupidin (Homer 2/vesl-2) in cultured cerebellar granule cells. J Neurochem 87(2):364–376

    PubMed  CAS  Google Scholar 

  72. Shiraishi Y, Mizutani A, Yuasa S, Mikoshiba K, Furuichi T (2004) Differential expression of Homer family proteins in the developing mouse brain. J Comp Neurol 473(4):582–599

    PubMed  CAS  Google Scholar 

  73. French PJ, O’Connor V, Jones MW, Davis S, Errington ML, Voss K, Truchet B, Wotjak C, Stean T, Doyere V, Maroun M, Laroche S, Bliss TV (2001) Subfield-specific immediate early gene expression associated with hippocampal long-term potentiation in vivo. Eur J Neurosci 13(5):968–976

    PubMed  CAS  Google Scholar 

  74. Polese D, de Serpis AA, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A (2002) Homer 1a gene expression modulation by antipsychotic drugs: involvement of the glutamate metabotropic system and effects of D-cycloserine. Neuropsychopharmacology 27(6):906–913

    PubMed  CAS  Google Scholar 

  75. Worley PF, Zeng W, Huang G, Kim JY, Shin DM, Kim MS, Yuan JP, Kiselyov K, Muallem S (2007) Homer proteins in Ca2+ signaling by excitable and non-excitable cells. Cell Calcium 42(4-5):363–371

    PubMed  CAS  Google Scholar 

  76. Bertaso F, Roussignol G, Worley P, Bockaert J, Fagni L, Ango F (2010) Homer1a-dependent crosstalk between NMDA and metabotropic glutamate receptors in mouse neurons. PLoS One 5(3):e9755

    PubMed  Google Scholar 

  77. Huang G, Kim JY, Dehoff M, Mizuno Y, Kamm KE, Worley PF, Muallem S, Zeng W (2007) Ca2+ signaling in microdomains: Homer1 mediates the interaction between RyR2 and Cav1.2 to regulate excitation–contraction coupling. J Biol Chem 282(19):14283–14290

    PubMed  CAS  Google Scholar 

  78. Pouliquin P, Dulhunty AF (2009) Homer and the ryanodine receptor. Eur Biophys J 39(1):91–102

    PubMed  CAS  Google Scholar 

  79. Duncan RS, Hwang SY, Koulen P (2005) Effects of Vesl/Homer proteins on intracellular signaling. Exp Biol Med (Maywood) 230(8):527–535

    CAS  Google Scholar 

  80. Yang L, Mao L, Tang Q, Samdani S, Liu Z, Wang JQ (2004) A novel Ca2+-independent signaling pathway to extracellular signal-regulated protein kinase by coactivation of NMDA receptors and metabotropic glutamate receptor 5 in neurons. J Neurosci 24(48):10846–10857

    PubMed  CAS  Google Scholar 

  81. Romorini S, Piccoli G, Jiang M, Grossano P, Tonna N, Passafaro M, Zhang M, Sala C (2004) A functional role of postsynaptic density-95–guanylate kinase-associated protein complex in regulating Shank assembly and stability to synapses. J Neurosci 24(42):9391–9404

    PubMed  CAS  Google Scholar 

  82. Xu W (2011) PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs) and synaptic plasticity. Curr Opin Neurobiol 21(2):306–312

    PubMed  CAS  Google Scholar 

  83. Sturgill JF, Steiner P, Czervionke BL, Sabatini BL (2009) Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking. J Neurosci 29(41):12845–12854

    PubMed  CAS  Google Scholar 

  84. Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, Ramsay MF, Morris RG, Morrison JH, O’Dell TJ, Grant SG (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396(6710):433–439

    PubMed  CAS  Google Scholar 

  85. Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA (2002) Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci U S A 99(21):13902–13907

    PubMed  CAS  Google Scholar 

  86. Colledge M, Dean RA, Scott GK, Langeberg LK, Huganir RL, Scott JD (2000) Targeting of PKA to glutamate receptors through a MAGUK–AKAP complex. Neuron 27(1):107–119

    PubMed  CAS  Google Scholar 

  87. El-Husseini Ael D, Schnell E, Dakoji S, Sweeney N, Zhou Q, Prange O, Gauthier-Campbell C, Aguilera-Moreno A, Nicoll RA, Bredt DS (2002) Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108(6):849–863

    Google Scholar 

  88. Xu J, Liu ZA, Pei DS, Xu TJ (2010) Calcium/calmodulin-dependent kinase II facilitated GluR6 subunit serine phosphorylation through GluR6-PSD95-CaMKII signaling module assembly in cerebral ischemia injury. Brain Res 1366:197–203

    PubMed  CAS  Google Scholar 

  89. Ivenshitz M, Segal M (2010) Neuronal density determines network connectivity and spontaneous activity in cultured hippocampus. J Neurophysiol 104(2):1052–1060

    PubMed  Google Scholar 

  90. Nassirpour R, Bahima L, Lalive AL, Luscher C, Lujan R, Slesinger PA (2010) Morphine- and CaMKII-dependent enhancement of GIRK channel signaling in hippocampal neurons. J Neurosci 30(40):13419–13430

    PubMed  CAS  Google Scholar 

  91. Boeckers TM, Bockmann J, Kreutz MR, Gundelfinger ED (2002) ProSAP/Shank proteins—a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J Neurochem 81(5):903–910

    PubMed  CAS  Google Scholar 

  92. Sala C, Piech V, Wilson NR, Passafaro M, Liu G, Sheng M (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31(1):115–130

    PubMed  CAS  Google Scholar 

  93. Boeckers TM (2006) The postsynaptic density. Cell Tissue Res 326(2):409–422

    PubMed  CAS  Google Scholar 

  94. Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M, Sawaya MR, Salyer D, Gundelfinger ED, Bowie JU (2006) An architectural framework that may lie at the core of the postsynaptic density. Science 311(5760):531–535

    PubMed  CAS  Google Scholar 

  95. Cepeda C, Levine MS (2006) Where do you think you are going? The NMDA-D1 receptor trap. Sci STKE 2006 333:pe20

    Google Scholar 

  96. Castner SA, Williams GV (2007) Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 63(2):94–122

    PubMed  Google Scholar 

  97. Chase TN, Oh JD (2000) Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci 23(10 Suppl):S86–S91

    PubMed  CAS  Google Scholar 

  98. Kreipke CW, Walker PD (2004) NMDA receptor blockade attenuates locomotion elicited by intrastriatal dopamine D1-receptor stimulation. Synapse 53(1):28–35

    PubMed  CAS  Google Scholar 

  99. Ferretti V, Florian C, Costantini VJ, Roullet P, Rinaldi A, De Leonibus E, Oliverio A, Mele A (2005) Co-activation of glutamate and dopamine receptors within the nucleus accumbens is required for spatial memory consolidation in mice. Psychopharmacol (Berl) 179(1):108–116

    CAS  Google Scholar 

  100. Baldwin AE, Sadeghian K, Kelley AE (2002) Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci 22(3):1063–1071

    PubMed  CAS  Google Scholar 

  101. Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci U S A 90(20):9576–9580

    PubMed  CAS  Google Scholar 

  102. Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS (1998) Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 79(1):82–94

    PubMed  CAS  Google Scholar 

  103. Gulledge AT, Jaffe DB (2001) Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex. J Neurophysiol 86(2):586–595

    PubMed  CAS  Google Scholar 

  104. Blank T, Nijholt I, Teichert U, Kugler H, Behrsing H, Fienberg A, Greengard P, Spiess J (1997) The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. Proc Natl Acad Sci U S A 94(26):14859–14864

    PubMed  CAS  Google Scholar 

  105. Snyder GL, Fienberg AA, Huganir RL, Greengard P (1998) A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 18(24):10297–10303

    PubMed  CAS  Google Scholar 

  106. Tseng KY, O’Donnell P (2004) Dopamine–glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24(22):5131–5139

    PubMed  CAS  Google Scholar 

  107. Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein–protein interactions with the dopamine D1 receptor. Cell 111(2):219–230

    PubMed  CAS  Google Scholar 

  108. Scott L, Kruse MS, Forssberg H, Brismar H, Greengard P, Aperia A (2002) Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci U S A 99(3):1661–1664

    PubMed  CAS  Google Scholar 

  109. Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG (2004) Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 65(1):121–129

    PubMed  CAS  Google Scholar 

  110. Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14(3):477–485

    PubMed  CAS  Google Scholar 

  111. Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, Van Tol HH, MacDonald JF (2002) A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 35(6):1111–1122

    PubMed  CAS  Google Scholar 

  112. Gulledge AT, Jaffe DB (1998) Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. J Neurosci 18(21):9139–9151

    PubMed  CAS  Google Scholar 

  113. Hernandez-Echeagaray E, Starling AJ, Cepeda C, Levine MS (2004) Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: are dendrites necessary? Eur J Neurosci 19(9):2455–2463

    PubMed  Google Scholar 

  114. Hakansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G (2006) Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 96(2):482–488

    PubMed  Google Scholar 

  115. Yan Z, Feng J, Fienberg AA, Greengard P (1999) D(2) dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc Natl Acad Sci U S A 96(20):11607–11612

    PubMed  CAS  Google Scholar 

  116. Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 20(24):8987–8995

    PubMed  CAS  Google Scholar 

  117. Lei S, Lu WY, Xiong ZG, Orser BA, Valenzuela CF, MacDonald JF (1999) Platelet-derived growth factor receptor-induced feed-forward inhibition of excitatory transmission between hippocampal pyramidal neurons. J Biol Chem 274(43):30617–30623

    PubMed  CAS  Google Scholar 

  118. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5(10):771–781

    PubMed  CAS  Google Scholar 

  119. Zhang J, Vinuela A, Neely MH, Hallett PJ, Grant SG, Miller GM, Isacson O, Caron MG, Yao WD (2007) Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem 282(21):15778–15789

    PubMed  CAS  Google Scholar 

  120. Gu WH, Yang S, Shi WX, Jin GZ, Zhen XC (2007) Requirement of PSD-95 for dopamine D1 receptor modulating glutamate NR1a/NR2B receptor function. Acta Pharmacol Sin 28(6):756–762

    PubMed  CAS  Google Scholar 

  121. Zhang J, Xu TX, Hallett PJ, Watanabe M, Grant SG, Isacson O, Yao WD (2009) PSD-95 uncouples dopamine–glutamate interaction in the D1/PSD-95/NMDA receptor complex. J Neurosci 29(9):2948–2960

    PubMed  CAS  Google Scholar 

  122. Azdad K, Gall D, Woods AS, Ledent C, Ferre S, Schiffmann SN (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A–D2 receptor heteromerization. Neuropsychopharmacology 34(4):972–986

    PubMed  CAS  Google Scholar 

  123. Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59(4):355–396

    PubMed  CAS  Google Scholar 

  124. Stromberg I, Popoli P, Muller CE, Ferre S, Fuxe K (2000) Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci 12(11):4033–4037

    PubMed  CAS  Google Scholar 

  125. Ciruela F, Burgueno J, Casado V, Canals M, Marcellino D, Goldberg SR, Bader M, Fuxe K, Agnati LF, Lluis C, Franco R, Ferre S, Woods AS (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope–epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 76(18):5354–5363

    PubMed  CAS  Google Scholar 

  126. Sheng M (2001) The postsynaptic NMDA-receptor-PSD-95 signaling complex in excitatory synapses of the brain. J Cell Sci 114(Pt 7):1251

    PubMed  CAS  Google Scholar 

  127. Olson PA, Tkatch T, Hernandez-Lopez S, Ulrich S, Ilijic E, Mugnaini E, Zhang H, Bezprozvanny I, Surmeier DJ (2005) G-protein-coupled receptor modulation of striatal CaV1.3L-type Ca2+ channels is dependent on a Shank-binding domain. J Neurosci 25(5):1050–1062

    PubMed  CAS  Google Scholar 

  128. Alexander GM, Godwin DW (2006) Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res 71(1):1–22

    PubMed  CAS  Google Scholar 

  129. Otani S, Auclair N, Desce JM, Roisin MP, Crepel F (1999) Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J Neurosci 19(22):9788–9802

    PubMed  CAS  Google Scholar 

  130. Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E (2004) Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. Brain Res Brain Res Rev 47(1-3):126–144

    PubMed  CAS  Google Scholar 

  131. Hu G, Duffy P, Swanson C, Ghasemzadeh MB, Kalivas PW (1999) The regulation of dopamine transmission by metabotropic glutamate receptors. J Pharmacol Exp Ther 289(1):412–416

    PubMed  CAS  Google Scholar 

  132. Katayama J, Akaike N, Nabekura J (2003) Characterization of pre- and post-synaptic metabotropic glutamate receptor-mediated inhibitory responses in substantia nigra dopamine neurons. Neurosci Res 45(1):101–115

    PubMed  CAS  Google Scholar 

  133. Wittmann M, Marino MJ, Conn PJ (2002) Dopamine modulates the function of group II and group III metabotropic glutamate receptors in the substantia nigra pars reticulata. J Pharmacol Exp Ther 302(2):433–441

    PubMed  CAS  Google Scholar 

  134. Schotanus SM, Chergui K (2008) Dopamine D1 receptors and group I metabotropic glutamate receptors contribute to the induction of long-term potentiation in the nucleus accumbens. Neuropharmacology 54(5):837–844

    PubMed  CAS  Google Scholar 

  135. Kim JH, Austin JD, Tanabe L, Creekmore E, Vezina P (2005) Activation of group II mGlu receptors blocks the enhanced drug taking induced by previous exposure to amphetamine. Eur J Neurosci 21(1):295–300

    PubMed  Google Scholar 

  136. Kim WY, Vezina P, Kim JH (2008) Blockade of group II, but not group I, mGluRs in the rat nucleus accumbens inhibits the expression of conditioned hyperactivity in an amphetamine-associated environment. Behav Brain Res 191(1):62–66

    PubMed  CAS  Google Scholar 

  137. Yoon HS, Jang JK, Kim JH (2008) Blockade of group II metabotropic glutamate receptors produces hyper-locomotion in cocaine pre-exposed rats by interactions with dopamine receptors. Neuropharmacology 55(4):555–559

    PubMed  CAS  Google Scholar 

  138. Morishima Y, Miyakawa T, Furuyashiki T, Tanaka Y, Mizuma H, Nakanishi S (2005) Enhanced cocaine responsiveness and impaired motor coordination in metabotropic glutamate receptor subtype 2 knockout mice. Proc Natl Acad Sci U S A 102(11):4170–4175

    PubMed  CAS  Google Scholar 

  139. David HN, Abraini JH (2003) Blockade of the locomotor stimulant effects of amphetamine by group I, group II, and group III metabotropic glutamate receptor ligands in the rat nucleus accumbens: possible interactions with dopamine receptors. Neuropharmacology 44(6):717–727

    PubMed  CAS  Google Scholar 

  140. Pietraszek M, Rogoz Z, Wolfarth S, Ossowska K (2004) Opposite influence of MPEP, an mGluR5 antagonist, on the locomotor hyperactivity induced by PCP and amphetamine. J Physiol Pharmacol 55(3):587–593

    PubMed  CAS  Google Scholar 

  141. Agnati LF, Ferre S, Lluis C, Franco R, Fuxe K (2003) Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 55(3):509–550

    PubMed  CAS  Google Scholar 

  142. Zoli M, Agnati LF, Hedlund PB, Li XM, Ferre S, Fuxe K (1993) Receptor–receptor interactions as an integrative mechanism in nerve cells. Mol Neurobiol 7(3-4):293–334

    PubMed  CAS  Google Scholar 

  143. Fuxe K, Borroto-Escuela DO, Marcellino D, Romero-Fernandez W, Frankowska M, Guidolin D, Filip M, Ferraro L, Woods AS, Tarakanov A, Ciruela F, Agnati LF, Tanganelli S (2012) GPCR heteromers and their allosteric receptor–receptor interactions. Curr Med Chem 19(3):356–363

    PubMed  CAS  Google Scholar 

  144. Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts DC, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati LF (2008) Receptor–receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev 58(2):415–452

    PubMed  CAS  Google Scholar 

  145. Diaz-Cabiale Z, Vivo M, Del Arco A, O’Connor WT, Harte MK, Muller CE, Martinez E, Popoli P, Fuxe K, Ferre S (2002) Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci Lett 324(2):154–158

    PubMed  CAS  Google Scholar 

  146. Popoli P, Pezzola A, Torvinen M, Reggio R, Pintor A, Scarchilli L, Fuxe K, Ferre S (2001) The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology 25(4):505–513

    PubMed  CAS  Google Scholar 

  147. Fuxe K, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, Tinner-Staines B, Staines W, Rosin D, Terasmaa A, Popoli P, Leo G, Vergoni V, Lluis C, Ciruela F, Franco R, Ferre S (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61(11 Suppl 6):S19–S23

    PubMed  CAS  Google Scholar 

  148. Nishi A, Liu F, Matsuyama S, Hamada M, Higashi H, Nairn AC, Greengard P (2003) Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc Natl Acad Sci U S A 100(3):1322–1327

    PubMed  Google Scholar 

  149. Cabello N, Gandia J, Bertarelli DC, Watanabe M, Lluis C, Franco R, Ferre S, Lujan R, Ciruela F (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J Neurochem 109(5):1497–1507

    PubMed  CAS  Google Scholar 

  150. Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13(8):958–966

    PubMed  CAS  Google Scholar 

  151. Ferre S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueno J, Gutierrez MA, Casado V, Fuxe K, Goldberg SR, Lluis C, Franco R, Ciruela F (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci U S A 99(18):11940–11945

    PubMed  CAS  Google Scholar 

  152. Wirkner K, Assmann H, Koles L, Gerevich Z, Franke H, Norenberg W, Boehm R, Illes P (2000) Inhibition by adenosine A(2A) receptors of NMDA but not AMPA currents in rat neostriatal neurons. Br J Pharmacol 130(2):259–269

    PubMed  CAS  Google Scholar 

  153. Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60(4):543–554

    PubMed  CAS  Google Scholar 

  154. Anwyl R (2009) Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharmacology 56(4):735–740

    PubMed  CAS  Google Scholar 

  155. Bonsi P, Pisani A, Bernardi G, Calabresi P (2003) Stimulus frequency, calcium levels and striatal synaptic plasticity. NeuroReport 14(3):419–422

    PubMed  Google Scholar 

  156. Gubellini P, Saulle E, Centonze D, Bonsi P, Pisani A, Bernardi G, Conquet F, Calabresi P (2001) Selective involvement of mGlu1 receptors in corticostriatal LTD. Neuropharmacology 40(7):839–846

    PubMed  CAS  Google Scholar 

  157. Kerr JN, Wickens JR (2001) Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 85(1):117–124

    PubMed  CAS  Google Scholar 

  158. Pawlak V, Kerr JN (2008) Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 28(10):2435–2446

    PubMed  CAS  Google Scholar 

  159. Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321(5890):848–851

    PubMed  CAS  Google Scholar 

  160. Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol [Epub ahead of print]

  161. Adermark L, Lovinger DM (2007) Combined activation of L-type Ca2+ channels and synaptic transmission is sufficient to induce striatal long-term depression. J Neurosci 27(25):6781–6787

    PubMed  CAS  Google Scholar 

  162. Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci U S A 99(22):14488–14493

    PubMed  CAS  Google Scholar 

  163. Rayport S (2001) Glutamate is a cotransmitter in ventral midbrain dopamine neurons. Parkinsonism Relat Disord 7(3):261–264

    PubMed  Google Scholar 

  164. Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16(2):436–447

    PubMed  CAS  Google Scholar 

  165. Cepeda C, Hurst RS, Altemus KL, Flores-Hernandez J, Calvert CR, Jokel ES, Grandy DK, Low MJ, Rubinstein M, Ariano MA, Levine MS (2001) Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol 85(2):659–670

    PubMed  CAS  Google Scholar 

  166. Tang K, Low MJ, Grandy DK, Lovinger DM (2001) Dopamine-dependent synaptic plasticity in striatum during in vivo development. Proc Natl Acad Sci U S A 98(3):1255–1260

    PubMed  CAS  Google Scholar 

  167. Zhang H, Sulzer D (2003) Glutamate spillover in the striatum depresses dopaminergic transmission by activating group I metabotropic glutamate receptors. J Neurosci 23(33):10585–10592

    PubMed  CAS  Google Scholar 

  168. Mao L, Wang JQ (2002) Activation of metabotropic glutamate receptor mediates upregulation of transcription factor mRNA expression in rat striatum induced by acute administration of amphetamine. Brain Res 924(2):167–175

    PubMed  CAS  Google Scholar 

  169. Ango F, Robbe D, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L (2002) Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol Cell Neurosci 20(2):323–329

    PubMed  CAS  Google Scholar 

  170. Kammermeier PJ (2006) Surface clustering of metabotropic glutamate receptor 1 induced by long Homer proteins. BMC Neurosci 7:1

    PubMed  Google Scholar 

  171. Kammermeier PJ (2008) Endogenous homer proteins regulate metabotropic glutamate receptor signaling in neurons. J Neurosci 28(34):8560–8567

    PubMed  CAS  Google Scholar 

  172. Mao L, Yang L, Tang Q, Samdani S, Zhang G, Wang JQ (2005) The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. J Neurosci 25(10):2741–2752

    PubMed  CAS  Google Scholar 

  173. Ronesi JA, Huber KM (2008) Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation. J Neurosci 28(2):543–547

    PubMed  CAS  Google Scholar 

  174. Hu JH, Park JM, Park S, Xiao B, Dehoff MH, Kim S, Hayashi T, Schwarz MK, Huganir RL, Seeburg PH, Linden DJ, Worley PF (2010) Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron 68(6):1128–1142

    PubMed  CAS  Google Scholar 

  175. Menard C, Quirion R (2012) Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, homer 1 proteins and downstream signaling pathways. PLoS One 7(1):e28666

    PubMed  CAS  Google Scholar 

  176. Ronesi JA, Collins KA, Hays SA, Tsai NP, Guo W, Birnbaum SG, Hu JH, Worley PF, Gibson JR, Huber KM (2012) Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat Neurosci 15(3):431–440

    PubMed  CAS  Google Scholar 

  177. Swanson CJ, Baker DA, Carson D, Worley PF, Kalivas PW (2001) Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer. J Neurosci 21(22):9043–9052

    PubMed  CAS  Google Scholar 

  178. Ghasemzadeh MB, Vasudevan P, Mueller C, Seubert C, Mantsch JR (2009) Neuroadaptations in the cellular and postsynaptic group 1 metabotropic glutamate receptor mGluR5 and Homer proteins following extinction of cocaine self-administration. Neurosci Lett 452(2):167–171

    PubMed  CAS  Google Scholar 

  179. Ary AW, Szumlinski KK (2007) Regional differences in the effects of withdrawal from repeated cocaine upon Homer and glutamate receptor expression: a two-species comparison. Brain Res 1184:295–305

    PubMed  CAS  Google Scholar 

  180. Szumlinski KK, Ary AW, Lominac KD, Klugmann M, Kippin TE (2008) Accumbens Homer2 overexpression facilitates alcohol-induced neuroplasticity in C57BL/6J mice. Neuropsychopharmacology 33(6):1365–1378

    PubMed  CAS  Google Scholar 

  181. Okvist A, Fagergren P, Whittard J, Garcia-Osta A, Drakenberg K, Horvath MC, Schmidt CJ, Keller E, Bannon MJ, Hurd YL (2011) Dysregulated postsynaptic density and endocytic zone in the amygdala of human heroin and cocaine abusers. Biol Psychiatry 69(3):245–252

    PubMed  Google Scholar 

  182. Kuwajima M, Dehoff MH, Furuichi T, Worley PF, Hall RA, Smith Y (2007) Localization and expression of group I metabotropic glutamate receptors in the mouse striatum, globus pallidus, and subthalamic nucleus: regulatory effects of MPTP treatment and constitutive Homer deletion. J Neurosci 27(23):6249–6260

    PubMed  CAS  Google Scholar 

  183. Choe ES, Chung KT, Mao L, Wang JQ (2002) Amphetamine increases phosphorylation of extracellular signal-regulated kinase and transcription factors in the rat striatum via group I metabotropic glutamate receptors. Neuropsychopharmacology 27(4):565–575

    PubMed  CAS  Google Scholar 

  184. Parelkar NK, Wang JQ (2004) mGluR5-dependent increases in immediate early gene expression in the rat striatum following acute administration of amphetamine. Brain Res Mol Brain Res 122(2):151–157

    PubMed  CAS  Google Scholar 

  185. Voulalas PJ, Holtzclaw L, Wolstenholme J, Russell JT, Hyman SE (2005) Metabotropic glutamate receptors and dopamine receptors cooperate to enhance extracellular signal-regulated kinase phosphorylation in striatal neurons. J Neurosci 25(15):3763–3773

    PubMed  CAS  Google Scholar 

  186. Yano M, Steiner H (2005) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 132(3):855–865

    PubMed  CAS  Google Scholar 

  187. Zhang GC, Mao LM, Liu XY, Parelkar NK, Arora A, Yang L, Hains M, Fibuch EE, Wang JQ (2007) In vivo regulation of Homer1a expression in the striatum by cocaine. Mol Pharmacol 71(4):1148–1158

    PubMed  CAS  Google Scholar 

  188. Yamada H, Kuroki T, Nakahara T, Hashimoto K, Tsutsumi T, Hirano M, Maeda H (2007) The dopamine D1 receptor agonist, but not the D2 receptor agonist, induces gene expression of Homer 1a in rat striatum and nucleus accumbens. Brain Res 1131(1):88–96

    PubMed  CAS  Google Scholar 

  189. Distelhorst CW, Bootman MD (2011) Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca(2+) signaling and disease. Cell Calcium 50(3):234–241

    PubMed  CAS  Google Scholar 

  190. Lidow MS (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Brain Res Rev 43(1):70–84

    PubMed  CAS  Google Scholar 

  191. Naisbitt S, Valtschanoff J, Allison DW, Sala C, Kim E, Craig AM, Weinberg RJ, Sheng M (2000) Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J Neurosci 20(12):4524–4534

    PubMed  CAS  Google Scholar 

  192. Oyagi A, Oida Y, Kakefuda K, Shimazawa M, Shioda N, Moriguchi S, Kitaichi K, Nanba D, Yamaguchi K, Furuta Y, Fukunaga K, Higashiyama S, Hara H (2009) Generation and characterization of conditional heparin-binding EGF-like growth factor knockout mice. PLoS One 4(10):e7461

    PubMed  Google Scholar 

  193. Beneyto M, Meador-Woodruff JH (2008) Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology 33(9):2175–2186

    PubMed  CAS  Google Scholar 

  194. Clinton SM, Meador-Woodruff JH (2004) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in Schizophrenia and bipolar disorder. Neuropsychopharmacology 29(7):1353–1362

    PubMed  CAS  Google Scholar 

  195. Kristiansen LV, Meador-Woodruff JH (2005) Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res 78(1):87–93

    PubMed  Google Scholar 

  196. Toro C, Deakin JF (2005) NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res 80(2-3):323–330

    PubMed  Google Scholar 

  197. Tsai SJ, Hong CJ, Cheng CY, Liao DL, Liou YJ (2007) Association study of polymorphisms in post-synaptic density protein 95 (PSD-95) with schizophrenia. J Neural Transm 114(4):423–426

    PubMed  Google Scholar 

  198. Szumlinski KK, Ary AW, Lominac KD (2008) Homers regulate drug-induced neuroplasticity: implications for addiction. Biochem Pharmacol 75(1):112–133

    PubMed  CAS  Google Scholar 

  199. Norton N, Williams HJ, Williams NM, Spurlock G, Zammit S, Jones G, Jones S, Owen R, O’Donovan MC, Owen MJ (2003) Mutation screening of the Homer gene family and association analysis in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 120B(1):18–21

    PubMed  CAS  Google Scholar 

  200. Spellmann I, Rujescu D, Musil R, Mayr A, Giegling I, Genius J, Zill P, Dehning S, Opgen-Rhein M, Cerovecki A, Hartmann AM, Schafer M, Bondy B, Muller N, Moller HJ, Riedel M (2011) Homer-1 polymorphisms are associated with psychopathology and response to treatment in schizophrenic patients. J Psychiatr Res 45(2):234–241

    PubMed  Google Scholar 

  201. Gilks WP, Allott EH, Donohoe G, Cummings E, International Schizophrenia Consortium, Gill M, Corvin AP, Morris DW (2010) Replicated genetic evidence supports a role for HOMER2 in schizophrenia. Neurosci Lett 468(3):229–233

    Google Scholar 

  202. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Roge B, Heron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27

    PubMed  CAS  Google Scholar 

  203. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81(6):1289–1297

    PubMed  CAS  Google Scholar 

  204. Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, Endris V, Roberts W, Szatmari P, Pinto D, Bonin M, Riess A, Engels H, Sprengel R, Scherer SW, Rappold GA (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42(6):489–491

    PubMed  CAS  Google Scholar 

  205. Berkel S, Tang W, Trevino M, Vogt M, Obenhaus HA, Gass P, Scherer SW, Sprengel R, Schratt G, Rappold GA (2012) Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Hum Mol Genet 21(2):344–357

    PubMed  CAS  Google Scholar 

  206. Hamdan FF, Gauthier J, Araki Y, Lin DT, Yoshizawa Y, Higashi K, Park AR, Spiegelman D, Dobrzeniecka S, Piton A, Tomitori H, Daoud H, Massicotte C, Henrion E, Diallo O, Group SD, Shekarabi M, Marineau C, Shevell M, Maranda B, Mitchell G, Nadeau A, D’Anjou G, Vanasse M, Srour M, Lafreniere RG, Drapeau P, Lacaille JC, Kim E, Lee JR, Igarashi K, Huganir RL, Rouleau GA, Michaud JL (2011) Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 88(3):306–316

    Google Scholar 

  207. Gong Y, Lippa CF, Zhu J, Lin Q, Rosso AL (2009) Disruption of glutamate receptors at Shank-postsynaptic platform in Alzheimer’s disease. Brain Res 1292:191–198

    PubMed  CAS  Google Scholar 

  208. Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A, Salmon D, Galasko D, Michael S, Savas JN, Yates JR, Glabe C, Masliah E (2010) Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 277(14):3051–3067

    PubMed  Google Scholar 

  209. Roselli F, Hutzler P, Wegerich Y, Livrea P, Almeida OF (2009) Disassembly of shank and homer synaptic clusters is driven by soluble beta-amyloid(1–40) through divergent NMDAR-dependent signalling pathways. PLoS One 4(6):e6011

    PubMed  Google Scholar 

  210. Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E, Lapointe M, Peng H, Cote M, Noreau A, Hamdan FF, Addington AM, Rapoport JL, Delisi LE, Krebs MO, Joober R, Fathalli F, Mouaffak F, Haghighi AP, Neri C, Dube MP, Samuels ME, Marineau C, Stone EA, Awadalla P, Barker PA, Carbonetto S, Drapeau P, Rouleau GA, Team SD (2010) De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A 107(17):7863–7868

    PubMed  CAS  Google Scholar 

  211. Lennertz L, Wagner M, Wolwer W, Schuhmacher A, Frommann I, Berning J, Schulze-Rauschenbach S, Landsberg MW, Steinbrecher A, Alexander M, Franke PE, Pukrop R, Ruhrmann S, Bechdolf A, Gaebel W, Klosterkotter J, Hafner H, Maier W, Mossner R (2011) A promoter variant of SHANK1 affects auditory working memory in schizophrenia patients and in subjects clinically at risk for psychosis. Eur Arch Psychiatry Clin Neurosci 262:117–124

    Google Scholar 

  212. Bangash MA, Park JM, Melnikova T, Wang D, Jeon SK, Lee D, Syeda S, Kim J, Kouser M, Schwartz J, Cui Y, Zhao X, Speed HE, Kee SE, Tu JC, Hu JH, Petralia RS, Linden DJ, Powell CM, Savonenko A, Xiao B, Worley PF (2011) Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Cell 145(5):758–772

    PubMed  CAS  Google Scholar 

  213. Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29(3):311–324

    PubMed  CAS  Google Scholar 

  214. Lopez-Tellez JF, Lopez-Aranda MF, Navarro-Lobato I, Masmudi-Martin M, Montanez EM, Calvo EB, Khan ZU (2010) Prefrontal inositol triphosphate is molecular correlate of working memory in nonhuman primates. J Neurosci 30(8):3067–3071

    PubMed  CAS  Google Scholar 

  215. Luo Z, Volkow ND, Heintz N, Pan Y, Du C (2011) Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+]i imaging. J Neurosci 31(37):13180–13190

    PubMed  CAS  Google Scholar 

  216. Ninan I, Jardemark KE, Wang RY (2003) Differential effects of atypical and typical antipsychotic drugs on N-methyl-D-aspartate- and electrically evoked responses in the pyramidal cells of the rat medial prefrontal cortex. Synapse 48(2):66–79

    PubMed  CAS  Google Scholar 

  217. Ninan I, Wang RY (2003) Modulation of the ability of clozapine to facilitate NMDA- and electrically evoked responses in pyramidal cells of the rat medial prefrontal cortex by dopamine: pharmacological evidence. Eur J Neurosci 17(6):1306–1312

    PubMed  Google Scholar 

  218. Purkayastha S, Ford J, Kanjilal B, Diallo S, Del Rosario IJ, Neuwirth L, El Idrissi A, Ahmed Z, Wieraszko A, Azmitia EC, Banerjee P (2012) Clozapine functions through the prefrontal cortex serotonin 1A receptor to heighten neuronal activity via calmodulin kinase II–NMDA receptor interactions. J Neurochem 120(3):396–407

    PubMed  CAS  Google Scholar 

  219. Kargieman L, Riga MS, Artigas F, Celada P (2012) Clozapine reverses phencyclidine-induced desynchronization of prefrontal cortex through a 5-HT(1A) receptor-dependent mechanism. Neuropsychopharmacology 37(3):723–733

    PubMed  CAS  Google Scholar 

  220. Yuen EY, Li X, Wei J, Horiguchi M, Meltzer HY, Yan Z (2012) The novel antipsychotic drug lurasidone enhances N-Methyl-D-aspartate receptor-mediated synaptic responses. Mol Pharmacol 81(2):113–119

    PubMed  CAS  Google Scholar 

  221. Jardemark K, Marcus MM, Shahid M, Svensson TH (2010) Effects of asenapine on prefrontal N-methyl-D-aspartate receptor-mediated transmission: involvement of dopamine D1 receptors. Synapse 64(11):870–874

    PubMed  CAS  Google Scholar 

  222. Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97(2):153–179

    PubMed  CAS  Google Scholar 

  223. Iasevoli F, Ambesi-Impiombato A, Fiore G, Panariello F, Muscettola G, de Bartolomeis A (2011) Pattern of acute induction of Homer1a gene is preserved after chronic treatment with first- and second-generation antipsychotics: effect of short-term drug discontinuation and comparison with Homer1a-interacting genes. J Psychopharmacol 25(7):875–887

    PubMed  CAS  Google Scholar 

  224. Iasevoli F, Fiore G, Cicale M, Muscettola G, de Bartolomeis A (2010) Haloperidol induces higher Homer1a expression than risperidone, olanzapine and sulpiride in striatal sub-regions. Psychiatry Res 177(1-2):255–260

    PubMed  CAS  Google Scholar 

  225. Abbas AI, Yadav PN, Yao WD, Arbuckle MI, Grant SG, Caron MG, Roth BL (2009) PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J Neurosci 29(22):7124–7136

    PubMed  CAS  Google Scholar 

  226. Tomasetti C, Dell’Aversano C, Iasevoli F, de Bartolomeis A (2007) Homer splice variants modulation within cortico-subcortical regions by dopamine D2 antagonists, a partial agonist, and an indirect agonist: implication for glutamatergic postsynaptic density in antipsychotics action. Neuroscience 150(1):144–158

    PubMed  CAS  Google Scholar 

  227. Iasevoli F, Tomasetti C, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A (2009) Dopamine receptor subtypes contribution to Homer1a induction: insights into antipsychotic molecular action. Prog Neuropsychopharmacol Biol Psychiatry 33(5):813–821

    PubMed  CAS  Google Scholar 

  228. de Bartolomeis A, Tomasetti C, Cicale M, Yuan PX, Manji HK (2012) Chronic treatment with lithium or valproate modulates the expression of Homer1b/c and its related genes Shank and Inositol 1,4,5-trisphosphate receptor. Eur Neuropsychopharmacol 22:527–535

    Google Scholar 

  229. Tomasetti C, Dell’Aversano C, Iasevoli F, Marmo F, de Bartolomeis A (2011) The acute and chronic effects of combined antipsychotic–mood stabilizing treatment on the expression of cortical and striatal postsynaptic density genes. Prog Neuropsychopharmacol Biol Psychiatry 35(1):184–197

    PubMed  CAS  Google Scholar 

  230. Dell’aversano C, Tomasetti C, Iasevoli F, de Bartolomeis A (2009) Antipsychotic and antidepressant co-treatment: effects on transcripts of inducible postsynaptic density genes possibly implicated in behavioural disorders. Brain Res Bull 79(2):123–129

    PubMed  Google Scholar 

  231. Critchlow HM, Maycox PR, Skepper JN, Krylova O (2006) Clozapine and haloperidol differentially regulate dendritic spine formation and synaptogenesis in rat hippocampal neurons. Mol Cell Neurosci 32(4):356–365

    PubMed  CAS  Google Scholar 

  232. Mueller HT, Haroutunian V, Davis KL, Meador-Woodruff JH (2004) Expression of the ionotropic glutamate receptor subunits and NMDA receptor-associated intracellular proteins in the substantia nigra in schizophrenia. Brain Res Mol Brain Res 121(1-2):60–69

    PubMed  CAS  Google Scholar 

  233. Kristiansen LV, Beneyto M, Haroutunian V, Meador-Woodruff JH (2006) hanges in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol Psychiatry 8(11):737–747, 705

    Google Scholar 

  234. Funk AJ, McCullumsmith RE, Haroutunian V, Meador-Woodruff JH (2012) Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia. Neuropsychopharmacology 37(4):896–905

    PubMed  CAS  Google Scholar 

  235. Lominac KD, Oleson EB, Pava M, Klugmann M, Schwarz MK, Seeburg PH, During MJ, Worley PF, Kalivas PW, Szumlinski KK (2005) Distinct roles for different Homer1 isoforms in behaviors and associated prefrontal cortex function. J Neurosci 25(50):11586–11594

    PubMed  CAS  Google Scholar 

  236. Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, Kim CJ, Berrios J, Colvin JS, Bousquet-Moore D, Lorenzo I, Wu G, Weinberg RJ, Ehlers MD, Philpot BD, Beaudet AL, Wetsel WC, Jiang YH (2011) Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 20(15):3093–3108

    PubMed  CAS  Google Scholar 

  237. Wohr M, Roullet FI, Hung AY, Sheng M, Crawley JN (2011) Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One 6(6):e20631

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge Dr. Carmela Dell’Aversano for her helpful suggestions on the first draft of the manuscript.

Andrea de Bartolomeis M.D. Ph.D. is full time employed at Department of Neuroscience University of Naples “Federico II”.

Carmine Tomasetti M.D. is Ph.D. student at Department of Neuroscience, University of Naples “Federico II”.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea de Bartolomeis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bartolomeis, A., Tomasetti, C. Calcium-Dependent Networks in Dopamine–Glutamate Interaction: The Role of Postsynaptic Scaffolding Proteins. Mol Neurobiol 46, 275–296 (2012). https://doi.org/10.1007/s12035-012-8293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8293-6

Keywords

Navigation