Skip to main content
Log in

Prenylation of Rho G-Proteins: a Novel Mechanism Regulating Gene Expression and Protein Stability in Human Trabecular Meshwork Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Endogenous prenylation with sesquiterpene or diterpene isoprenoids facilitates membrane localization and functional activation of small monomeric GTP-binding proteins. A direct effect of isoprenoids on regulation of gene expression and protein stability has also been proposed. In this study, we determined the role of sesquiterpene or diterpene isoprenoids on the regulation of Rho G-protein expression, activation, and stability in human trabecular meshwork (TM) cells. In both primary and transformed human TM cells, limiting endogenous isoprenoid synthesis with lovastatin, a potent HMG-CoA reductase inhibitor, elicited marked increases in RhoA and RhoB mRNA and protein content. The effect of lovastatin was dose-dependent with newly synthesized inactive protein accumulating in the cytosol. Supplementation with geranylgeranyl pyrophosphate (GGPP) prevented, while inhibition of geranylgeranyl transferase-I mimicked, the effects of lovastatin on RhoA and RhoB protein content. Similarly, lovastatin-dependent increases in RhoA and RhoB mRNA expression were mimicked by geranylgeranyl transferase-I inhibition. Interestingly, GGPP supplementation selectively promoted the degradation of newly synthesized Rho proteins which was mediated, in part, through the 20S proteasome. Functionally, GGPP supplementation prevented lovastatin-dependent decreases in actin stress fiber organization while selectively facilitating the subcellular redistribution of accumulated Rho proteins from the cytosol to the membrane and increasing RhoA activation. Post-translational prenylation with geranylgeranyl diterpenes selectively facilitates the expression, membrane translocation, functional activation, and turnover of newly synthesized Rho proteins. Geranylgeranyl prenylation represents a novel mechanism by which active Rho proteins are targeted to the 20S proteasome for degradation in human TM cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Holstein SA, Hohl RJ (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39:293–309

    Article  PubMed  CAS  Google Scholar 

  2. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  PubMed  CAS  Google Scholar 

  3. Zhang L, Tschantz WR, Casey PJ (1997) Isolation and characterization of a prenylcysteine lyase from bovine brain. J Biol Chem 272:23354–23359

    Article  PubMed  CAS  Google Scholar 

  4. Gao J, Liao J, Yang GY (2009) CAAX-box protein, prenylation process and carcinogenesis. Am J Transl Res 1:312–325

    PubMed  Google Scholar 

  5. Wright LP, Philips MR (2006) Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 47:883–891

    Article  PubMed  CAS  Google Scholar 

  6. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  7. Mackay DJ, Hall A (1998) Rho GTPases. J Biol Chem 273:20685–20688

    Article  PubMed  CAS  Google Scholar 

  8. Wheeler AP, Ridley AJ (2004) Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res 301:43–49

    Article  PubMed  CAS  Google Scholar 

  9. Roberts PJ, Mitin N, Keller PJ et al (2008) Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 283:25150–25163

    Article  PubMed  CAS  Google Scholar 

  10. Dietrich LE, Ungermann C (2004) On the mechanism of protein palmitoylation. EMBO Rep 5:1053–1057

    Article  PubMed  CAS  Google Scholar 

  11. Smotrys JE, Linder ME (2004) Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 73:559–587

    Article  PubMed  CAS  Google Scholar 

  12. Alm A, Nilsson SF (2009) Uveoscleral outflow—a review. Exp Eye Res 88:760–768

    Article  PubMed  CAS  Google Scholar 

  13. Tian B, Gabelt BT, Geiger B, Kaufman PL (2009) The role of the actomyosin system in regulating trabecular fluid outflow. Exp Eye Res 88:713–717

    Article  PubMed  CAS  Google Scholar 

  14. Ramachandran C, Satpathy M, Mehta D, Srinivas SP (2008) Forskolin induces myosin light chain dephosphorylation in bovine trabecular meshwork cells. Curr Eye Res 33:169–176

    Article  PubMed  CAS  Google Scholar 

  15. Shen X, Koga T, Park BC, SundarRaj N, Yue BY (2008) Rho GTPase and cAMP/protein kinase A signaling mediates myocilin-induced alterations in cultured human trabecular meshwork cells. J Biol Chem 283:603–612

    Article  PubMed  CAS  Google Scholar 

  16. Rao VP, Epstein DL (2007) Rho GTPase/Rho kinase inhibition as a novel target for the treatment of glaucoma. BioDrugs 21:167–177

    Article  PubMed  CAS  Google Scholar 

  17. Honjo M, Tanihara H, Inatani M, Kido N, Sawamura T, Yue BY, Narumiya S, Honda Y (2001) Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci 42:137–144

    PubMed  CAS  Google Scholar 

  18. Liu X, Hu Y, Filla MS, Gabelt BT, Peters DM, Brandt CR, Kaufman PL (2005) The effect of C3 transgene expression on actin and cellular adhesions in cultured human trabecular meshwork cells and on outflow facility in organ cultured monkey eyes. Mol Vis 11:1112–1121

    PubMed  Google Scholar 

  19. Nakamura Y, Hirano S, Suzuki K, Seki K, Sagara T, Nishida T (2002) Signaling mechanism of TGF-beta1-induced collagen contraction mediated by bovine trabecular meshwork cells. Invest Ophthalmol Vis Sci 43:3465–3472

    PubMed  Google Scholar 

  20. Rao PV, Deng P, Maddala R, Epstein DL, Li CY, Shimokawa H (2005) Expression of dominant negative Rho-binding domain of Rho-kinase in organ cultured human eye anterior segments increases aqueous humor outflow. Mol Vis 11:288–297

    PubMed  CAS  Google Scholar 

  21. Rao PV, Deng PF, Kumar J, Epstein DL (2001) Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest Ophthalmol Vis Sci 42:1029–1037

    PubMed  CAS  Google Scholar 

  22. Thieme H, Nuskovski M, Nass JU, Pleyer U, Strauss O, Wiederholt M (2000) Mediation of calcium-independent contraction in trabecular meshwork through protein kinase C and rho-A. Invest Ophthalmol Vis Sci 41:4240–4246

    PubMed  CAS  Google Scholar 

  23. Liao JK, Seto M, Noma K (2007) Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 50:17–24

    Article  PubMed  CAS  Google Scholar 

  24. Tanihara H, Inatani M, Honjo M, Tokushige H, Azuma J, Araie M (2008) Intraocular pressure-lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol 126:309–315

    Article  PubMed  CAS  Google Scholar 

  25. Sever N, Song BL, Yabe D, Goldstein JL, Brown MS, DeBose-Boyd RA (2003) Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J Biol Chem 278:52479–52490

    Article  PubMed  CAS  Google Scholar 

  26. Holstein SA, Wohlford-Lenane CL, Hohl RJ (2002) Isoprenoids influence expression of Ras and Ras-related proteins. Biochemistry 41:13698–13704

    Article  PubMed  CAS  Google Scholar 

  27. Holstein SA, Wohlford-Lenane CL, Hohl RJ (2002) Consequences of mevalonate depletion. Differential transcriptional, translational, and post-translational up-regulation of Ras, Rap1a, RhoA, AND RhoB. J Biol Chem 277:10678–10682

    Article  PubMed  CAS  Google Scholar 

  28. Von Zee CL, Richards MP, Bu P, Perlman JI, Stubbs EB (2009) Lovastatin increases RhoA and RhoB protein accumulation in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci

  29. Von Zee CL, Stubbs EB Jr (2011) Geranylgeranylation facilitates proteasomal degradation of rho G-proteins in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 52:1676–1683

    Article  Google Scholar 

  30. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110:227–239

    Article  PubMed  Google Scholar 

  31. Laufs U, Liao JK (2000) Targeting Rho in cardiovascular disease. Circ Res 87:526–528

    Article  PubMed  CAS  Google Scholar 

  32. Adamson P, Marshall CJ, Hall A, Tilbrook PA (1992) Post-translational modifications of p21rho proteins. J Biol Chem 267:20033–20038

    PubMed  CAS  Google Scholar 

  33. Armstrong SA, Hannah VC, Goldstein JL, Brown MS (1995) CAAX geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB. J Biol Chem 270:7864–7868

    Article  PubMed  CAS  Google Scholar 

  34. Lebowitz PF, Du W, Prendergast GC (1997) Prenylation of RhoB is required for its cell transforming function but not its ability to activate serum response element-dependent transcription. J Biol Chem 272:16093–16095

    Article  PubMed  CAS  Google Scholar 

  35. Allal C, Favre G, Couderc B, Salicio S, Sixou S, Hamilton AD, Sebti SM, Lajoie-Mazenc I, Pradines A (2000) RhoA prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription. J Biol Chem 275:31001–31008

    Article  PubMed  CAS  Google Scholar 

  36. Cole SL, Vassar R (2006) Isoprenoids and Alzheimer's disease: a complex relationship. Neurobiol Dis 22:209–222

    Article  PubMed  CAS  Google Scholar 

  37. Hooff GP, Wood WG, Muller WE, Eckert GP (2010) Isoprenoids, small GTPases and Alzheimer's disease. Biochim Biophys Acta 1801:896–905

    Article  PubMed  CAS  Google Scholar 

  38. Pac-Soo C, Lloyd DG, Vizcaychipi MP, Ma D (2011) Statins: the role in the treatment and prevention of Alzheimer's neurodegeneration. J Alzheimers Dis 27:1–10

    PubMed  CAS  Google Scholar 

  39. Piau A, Nourhashemi F, Hein C, Caillaud C, Vellas B (2011) Progress in the development of new drugs in Alzheimer's disease. J Nutr Health Aging 15:45–57

    Article  PubMed  CAS  Google Scholar 

  40. Li L, Cao D, Kim H, Lester R, Fukuchi K (2006) Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60:729–739

    Article  PubMed  CAS  Google Scholar 

  41. Mans RA, Chowdhury N, Cao D, McMahon LL, Li L (2010) Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice. Neuroscience 166:435–444

    Article  PubMed  CAS  Google Scholar 

  42. Yue BY, Higginbotham EJ, Chang IL (1990) Ascorbic acid modulates the production of fibronectin and laminin by cells from an eye tissue-trabecular meshwork. Exp Cell Res 187:65–68

    Article  PubMed  CAS  Google Scholar 

  43. Laufs U, Endres M, Custodis F, Gertz K, Nickenig G, Liao JK, Bohm M (2000) Suppression of endothelial nitric oxide production after withdrawal of statin treatment is mediated by negative feedback regulation of rho GTPase gene transcription. Circulation 102:3104–3110

    Article  PubMed  CAS  Google Scholar 

  44. Correll CC, Ng L, Edwards PA (1994) Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 269:17390–17393

    PubMed  CAS  Google Scholar 

  45. Stamatakis K, Cernuda-Morollon E, Hernandez-Perera O, Perez-Sala D (2002) Isoprenylation of RhoB is necessary for its degradation. A novel determinant in the complex regulation of RhoB expression by the mevalonate pathway. J Biol Chem 277:49389–49396

    Article  PubMed  CAS  Google Scholar 

  46. Pang IH, Shade DL, Clark AF, Steely HT, DeSantis L (1994) Preliminary characterization of a transformed cell strain derived from human trabecular meshwork. Curr Eye Res 13:51–63

    Article  PubMed  CAS  Google Scholar 

  47. Rolli-Derkinderen M, Sauzeau V, Boyer L, Lemichez E, Baron C, Henrion D, Loirand G, Pacaud P (2005) Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ Res 96:1152–1160

    Article  PubMed  CAS  Google Scholar 

  48. Liton PB, Gonzalez P, Epstein DL (2009) The role of proteolytic cellular systems in trabecular meshwork homeostasis. Exp Eye Res 88:724–728

    Article  PubMed  CAS  Google Scholar 

  49. Hanna J, Finley D (2007) A proteasome for all occasions. FEBS Lett 581:2854–2861

    Article  PubMed  CAS  Google Scholar 

  50. Boyer L, Turchi L, Desnues B et al (2006) CNF1-induced ubiquitylation and proteasome destruction of activated RhoA is impaired in Smurf1−/− cells. Mol Biol Cell 17:2489–2497

    Article  PubMed  CAS  Google Scholar 

  51. Chen Y, Yang Z, Meng M et al (2009) Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 35:841–855

    Article  PubMed  CAS  Google Scholar 

  52. Breusing N, Grune T (2008) Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 389:203–209

    Article  PubMed  CAS  Google Scholar 

  53. Perez-Sala D, Boya P, Ramos I, Herrera M, Stamatakis K (2009) The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway. PLoS One 4:e8117

    Article  PubMed  Google Scholar 

  54. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308–1311

    Article  PubMed  CAS  Google Scholar 

  55. Waki M, Yoshida Y, Oka T, Azuma M (2001) Reduction of intraocular pressure by topical administration of an inhibitor of the Rho-associated protein kinase. Curr Eye Res 22:470–474

    Article  PubMed  CAS  Google Scholar 

  56. Song J, Deng PF, Stinnett SS, Epstein DL, Rao PV (2005) Effects of cholesterol-lowering statins on the aqueous humor outflow pathway. Invest Ophthalmol Vis Sci 46:2424–2432

    Article  PubMed  Google Scholar 

  57. Vittitow JL, Garg R, Rowlette LL, Epstein DL, O'Brien ET, Borras T (2002) Gene transfer of dominant-negative RhoA increases outflow facility in perfused human anterior segment cultures. Mol Vis 8:32–44

    PubMed  CAS  Google Scholar 

  58. McGwin G Jr, McNeal S, Owsley C, Girkin C, Epstein D, Lee PP (2004) Statins and other cholesterol-lowering medications and the presence of glaucoma. Arch Ophthalmol 122:822–826

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants from the Department of Veterans Affairs (C3638R and B3756-F (EBS), Pre-Doctoral Associated Health Rehabilitation Research Fellowship and C7506M (CVZ)), the Illinois Society for the Prevention of Blindness, the Midwest Eye Banks, and the Richard A. Peritt Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan B. Stubbs Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stubbs, E.B., Von Zee, C.L. Prenylation of Rho G-Proteins: a Novel Mechanism Regulating Gene Expression and Protein Stability in Human Trabecular Meshwork Cells. Mol Neurobiol 46, 28–40 (2012). https://doi.org/10.1007/s12035-012-8249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8249-x

Keywords

Navigation