Skip to main content
Log in

How Histone Deacetylases Control Myelination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Myelinated axons are a beautiful example of symbiotic interactions between two cell types: Myelinating glial cells organize axonal membranes and build their myelin sheaths to allow fast action potential conduction, while axons regulate myelination and enhance the survival of myelinating cells. Axonal demyelination, occurring in neurodegenerative diseases or after a nerve injury, results in severe motor and/or mental disabilities. Thus, understanding how the myelination process is induced, regulated, and maintained is crucial to develop new therapeutic strategies for regeneration in the nervous system. Epigenetic regulation has recently been recognized as a fundamental contributing player. In this review, we focus on the central mechanisms of gene regulation mediated by histone deacetylation and other key functions of histone deacetylases in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hartline DK (2008) What is myelin? Neuron Glia Biol 4:153–163

    PubMed  Google Scholar 

  2. Zalc B, Goujet D, Colman D (2008) The origin of the myelination program in vertebrates. Curr Biol 18:R511–R512

    PubMed  CAS  Google Scholar 

  3. Dyer CA (2002) The structure and function of myelin: from inert membrane to perfusion pump. Neurochem Res 27:1279–1292

    PubMed  CAS  Google Scholar 

  4. Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17:R29–R35

    PubMed  CAS  Google Scholar 

  5. Arroyo EJ, Scherer SS (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113:1–18

    PubMed  CAS  Google Scholar 

  6. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    PubMed  CAS  Google Scholar 

  7. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    PubMed  CAS  Google Scholar 

  8. Brecknell JE, Fawcett JW (1996) Axonal regeneration. Biol Rev Camb Philos Soc 71:227–255

    PubMed  CAS  Google Scholar 

  9. Woodhoo A, Sommer L (2008) Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 56:1481–1490

    PubMed  Google Scholar 

  10. Svaren J, Meijer D (2008) The molecular machinery of gene transcription in Schwann cells. Glia 56:1541–1551

    PubMed  Google Scholar 

  11. Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467

    PubMed  CAS  Google Scholar 

  12. Wegner M (2008) A matter of identity: transcriptional control in oligodendrocytes. J Mol Neurosci 35:3–12

    PubMed  CAS  Google Scholar 

  13. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    PubMed  Google Scholar 

  14. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    PubMed  CAS  Google Scholar 

  15. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126:941–954

    PubMed  CAS  Google Scholar 

  16. Liszt G, Ford E, Kurtev M, Guarente L (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280:21313–21320

    PubMed  CAS  Google Scholar 

  17. Voelter-Mahlknecht S, Letzel S, Mahlknecht U (2006) Fluorescence in situ hybridization and chromosomal organization of the human Sirtuin 7 gene. Int J Oncol 28:899–908

    PubMed  CAS  Google Scholar 

  18. Zhou X, Richon VM, Rifkind RA, Marks PA (2000) Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci U S A 97:1056–1061

    PubMed  CAS  Google Scholar 

  19. Yao YL, Yang WM (2011) Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J Biomed Biotechnol 2011:146493

    PubMed  Google Scholar 

  20. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    PubMed  CAS  Google Scholar 

  21. Frye RA (1999) Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260:273–279

    PubMed  CAS  Google Scholar 

  22. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280:13560–13567

    PubMed  CAS  Google Scholar 

  23. McKinsey TA, Zhang CL, Olson EN (2001) Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21:6312–6321

    PubMed  CAS  Google Scholar 

  24. McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111

    PubMed  CAS  Google Scholar 

  25. Kim JY, Shen S, Dietz K, He Y, Howell O, Reynolds R, Casaccia P (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13:180–189

    PubMed  Google Scholar 

  26. Han Y, Jin YH, Kim YJ, Kang BY, Choi HJ, Kim DW, Yeo CY, Lee KY (2008) Acetylation of Sirt2 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun 375:576–580

    PubMed  CAS  Google Scholar 

  27. Brandl A, Heinzel T, Krämer OH (2009) Histone deacetylases: salesmen and customers in the post-translational modification market. Biol Cell 101:193–205

    PubMed  CAS  Google Scholar 

  28. Hayakawa T, Nakayama J (2011) Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol 2011:129383

    PubMed  Google Scholar 

  29. Zupkovitz G, Tischler J, Posch M, Sadzak I, Ramsauer K, Egger G, Grausenburger R, Schweifer N, Chiocca S, Decker T, Seiser C (2006) Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol Cell Biol 26:7913–7928

    PubMed  CAS  Google Scholar 

  30. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct function in active and inactive genes. Cell 138:1–13

    Google Scholar 

  31. Jacob C, Christen CN, Pereira JA, Somandin C, Baggiolini A, Lötscher P, Ozçelik M, Tricaud N, Meijer D, Yamaguchi T, Matthias P, Suter U (2011) HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat Neurosci 14:429–436

    PubMed  CAS  Google Scholar 

  32. Chen Y, Wang H, Yoon SO, Xu X, Hottiger MO, Svaren J, Nave KA, Kim HA, Olson EN, Lu QR (2011) HDAC-mediated deacetylation of NF-κB is critical for Schwann cell myelination. Nat Neurosci 14:437–441

    PubMed  CAS  Google Scholar 

  33. Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18:237–250

    PubMed  CAS  Google Scholar 

  34. Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78

    PubMed  CAS  Google Scholar 

  35. Paratore C, Goerich DE, Suter U, Wegner M, Sommer L (2001) Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128:3949–3961

    PubMed  CAS  Google Scholar 

  36. Finzsch M, Schreiner S, Kichko T, Reeh P, Tamm ER, Bösl MR, Meijer D, Wegner M (2010) Sox10 is not only required for Schwann cell specification, but also for maintenance of cell identity and progression beyond the immature Schwann cell stage. J Cell Biol 189:701–712

    PubMed  CAS  Google Scholar 

  37. Bremer M, Fröb F, Kichko T, Reeh P, Tamm ER, Suter U, Wegner M (2011) Sox10 is required for Schwann-cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia 59:1022–1032

    PubMed  Google Scholar 

  38. Bermingham JR, Scherer SS, O’Connell S, Arroyo E, Kalla KA, Powell FL, Rosenfeld MG (1996) Tst-l/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev 10:1751–1762

    PubMed  CAS  Google Scholar 

  39. Topilko P, Schneider-Manouri S, Levi G, Baron-Van Evercooren A, Ben Younes Chennoufi A, Seitanidou T, Babinet C, Charnay P (1994) Krox-20 controls myelination in the peripheral nervous system. Nature 371:796–799

    PubMed  CAS  Google Scholar 

  40. Ghislain J, Charnay P (2006) Control of myelination in Schwann cells: a Krox20 cis-regulatory element integrates Oct6, Brn2 and Sox10 activities. EMBO Rep 7:52–58

    PubMed  CAS  Google Scholar 

  41. Schreiner S, Cossais F, Fischer K, Scholz S, Bosl MR, Holtmann B, Sendtner M, Wegner M (2007) Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development 134:3271–3281

    PubMed  CAS  Google Scholar 

  42. Nickols JC, Valentine W, Kanwal S, Carter BD (2003) Activation of the transcription factor NF-kappaB in Schwann cells is required for peripheral myelin formation. Nat Neurosci 6:161–167

    PubMed  CAS  Google Scholar 

  43. Tawk M, Makoukji J, Belle M, Fonte C, Trousson A, Hawkins T, Li H, Ghandour S, Schumacher M, Massaad C (2011) Wnt/beta-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. J Neurosci 31:3729–3742

    PubMed  CAS  Google Scholar 

  44. Lewallen KA, Shen YA, De la Torre AR, Ng BK, Meijer D, Chan JR (2011) Assessing the role of the cadherin/catenin complex at the Schwann cell–axon interface and in the initiation of myelination. J Neurosci 31:3032–3043

    PubMed  CAS  Google Scholar 

  45. Srinivasan R, Mager GM, Ward RM, Mayer J, Svaren J (2006) NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 281:15129–15137

    PubMed  CAS  Google Scholar 

  46. Mager GM, Ward RM, Srinivasan R, Jang SW, Wrabetz L, Svaren J (2008) Active gene repression by the Egr2.NAB complex during peripheral nerve myelination. J Biol Chem 283:18187–18197

    PubMed  CAS  Google Scholar 

  47. Ward Y, Yap SF, Ravichandran V, Matsumura F, Ito M, Spinelli B, Kelly K (2002) The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J Cell Biol 157:291–302

    PubMed  CAS  Google Scholar 

  48. Yamauchi J, Chan JR, Shooter EM (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways on Rho GTPases. Proc Natl Acad Sci U S A 101:8774–8779

    PubMed  CAS  Google Scholar 

  49. Melendez-Vasquez CV, Einheber S, Salzer JL (2004) Rho kinase regulates Schwann cell myelination and formation of associated axonal domains. J Neurosci 24:3953–3963

    PubMed  CAS  Google Scholar 

  50. Verheijen MH, Chrast R, Burrola P, Lemke G (2003) Local regulation of fat metabolism in peripheral nerves. Genes Dev 17:2450–2464

    PubMed  CAS  Google Scholar 

  51. Le N, Nagarajan R, Wang JY, Svaren J, LaPash C, Araki T, Schmidt RE, Milbrandt J (2005) Nab proteins are essential for peripheral nervous system myelination. Nat Neurosci 8:932–940

    PubMed  CAS  Google Scholar 

  52. Chittka A, Arevalo JC, Rodriguez-Guzman M, Pérez P, Chao MV, Sendtner M (2004) The p75NTR-interacting protein SC1 inhibits cell cycle progression by transcriptional repression of cyclin E. J Cell Biol 164:985–996

    PubMed  CAS  Google Scholar 

  53. Chittka A, Chao MV (1999) Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proc Natl Acad Sci U S A 96:10705–10710

    PubMed  CAS  Google Scholar 

  54. Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A, Dimova K, Orfaniotou F, Dhaunchak A, Brinkmann BG, Möbius W, Guarente L, Casaccia-Bonnefil P, Jahn O, Nave KA (2007) Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci 27:7717–7730

    PubMed  CAS  Google Scholar 

  55. Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7:11–18

    PubMed  CAS  Google Scholar 

  56. Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH (2011) Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 34:21–43

    PubMed  CAS  Google Scholar 

  57. Richardson WD, Young KM, Tripathi RB, McKenzie I (2011) NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70:661–673

    PubMed  CAS  Google Scholar 

  58. Stolt CC, Lommes P, Sock E, Chaboissier M-C, Schedl A, Wegner M (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677–1689

    PubMed  CAS  Google Scholar 

  59. Stolt CC, Schmitt S, Lommes P, Sock E, Wegner M (2005) Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Dev Biol 281:323–331

    Google Scholar 

  60. Zhou Q, Anderson DJ (2002) The bHLH transcription factors olig2 and olig1 couple neuronal and glial subtype specification. Cell 109:61–73

    PubMed  CAS  Google Scholar 

  61. Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86

    PubMed  CAS  Google Scholar 

  62. Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45:41–53

    PubMed  CAS  Google Scholar 

  63. Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45:55–67

    PubMed  CAS  Google Scholar 

  64. Zhou Q, Choi G, Anderson DJ (2001) The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31:791–807

    PubMed  CAS  Google Scholar 

  65. Liu Z, Hu X, Cai J, Liu B, Peng X, Wegner M, Qiu M (2007) Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Dev Biol 302:683–693

    PubMed  CAS  Google Scholar 

  66. Finzsch M, Stolt CC, Lommes P, Wegner M (2008) Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development 135:637–646

    PubMed  CAS  Google Scholar 

  67. Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR (2005) Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 25:1354–1365

    PubMed  CAS  Google Scholar 

  68. Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M (2002) Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16:165–170

    PubMed  CAS  Google Scholar 

  69. Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, Ibrahim A, Ligon KL, Rowitch DH, Barres BA (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–185

    PubMed  CAS  Google Scholar 

  70. Wang S, Sdrulla A, Johnson JE, Yokota Y, Barres BA (2001) A role for the helix-loop-helix protein Id2 in the control of oligodendrocyte development. Neuron 29:603–614

    PubMed  CAS  Google Scholar 

  71. Samanta J, Kessler JA (2004) Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131:4131–4142

    PubMed  CAS  Google Scholar 

  72. Kondo T, Raff M (2000) The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO J 19:1998–2007

    PubMed  CAS  Google Scholar 

  73. Stolt CC, Schlierf A, Lommes P, Hillgärtner S, Werner T, Kosian T, Sock E, Kessaris N, Richardson WD, Lefebvre V, Wegner M (2006) SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell 11:697–709

    PubMed  CAS  Google Scholar 

  74. Kondo T, Raff M (2000) Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 127:2989–2998

    PubMed  CAS  Google Scholar 

  75. Liu A, Li J, Marin-Husstege M, Kageyama R, Fan Y, Gelinas C, Casaccia-Bonnefil P (2006) A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO J 25:4833–4842

    PubMed  CAS  Google Scholar 

  76. Codd R, Braich N, Liu J, Soe CZ, Pakchung AA (2009) Zn(II)-dependent histone deacetylase inhibitors: suberoylanilide hydroxamic acid and trichostatin A. Int J Biochem Cell Biol 41:736–739

    PubMed  CAS  Google Scholar 

  77. Tan J, Cang S, Ma Y, Petrillo RL, Liu D (2010) Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 4:3–5

    Google Scholar 

  78. Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 22:10333–10345

    PubMed  CAS  Google Scholar 

  79. Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169:577–589

    PubMed  CAS  Google Scholar 

  80. Lyssiotis CA, Walker J, Wu C, Kondo T, Schultz PG, Wu X (2007) Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc Natl Acad Sci U S A 104:14982–14987

    PubMed  CAS  Google Scholar 

  81. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757

    PubMed  CAS  Google Scholar 

  82. Shakèd M, Weissmüller K, Svoboda H, Hortschansky P, Nishino N, Wölfl S, Tucker KL (2008) Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling. PLoS ONE 3:e2668

    PubMed  Google Scholar 

  83. Kim DW, Lassar AB (2003) Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol 23:8704–8717

    PubMed  CAS  Google Scholar 

  84. Humphrey GW, Wang YH, Hirai T, Padmanabhan R, Panchision DM, Newell LF, McKay RD, Howard BH (2008) Complementary roles for histone deacetylases 1, 2, and 3 in differentiation of pluripotent stem cells. Differentiation 76:348–356

    PubMed  CAS  Google Scholar 

  85. Swiss VA, Nguyen T, Dugas J, Ibrahim A, Barres B, Androulakis IP, Casaccia P (2011) Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation. PLoS One 6:e18088

    PubMed  CAS  Google Scholar 

  86. Cunliffe VT, Casaccia-Bonnefil P (2006) Histone deacetylase 1 is essential for oligodendrocyte specification in the zebrafish CNS. Mech Dev 123:24–30

    PubMed  CAS  Google Scholar 

  87. Dewald LE, Rodriguez JP, Levine JM (2011) The RE1 binding protein REST regulates oligodendrocyte differentiation. J Neurosci 31:3470–3483

    PubMed  CAS  Google Scholar 

  88. Shimizu T, Kagawa T, Wada T, Muroyama Y, Takada S, Ikenaka K (2005) Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev Biol 282:397–410

    PubMed  CAS  Google Scholar 

  89. Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585

    PubMed  CAS  Google Scholar 

  90. Feigenson K, Reid M, See J, Crenshaw EB 3rd, Grinspan JB (2009) Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 42:255–265

    PubMed  CAS  Google Scholar 

  91. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin–TCF interaction. Nat Neurosci 12:829–838

    PubMed  CAS  Google Scholar 

  92. Billin AN, Thirlwell H, Ayer DE (2000) Beta-catenin–histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Mol Cell Biol 20:6882–6890

    PubMed  CAS  Google Scholar 

  93. Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21:63–75

    PubMed  Google Scholar 

  94. Givogri MI, Costa RM, Schonmann V, Silva AJ, Campagnoni AT, Bongarzone ER (2002) Central nervous system myelination in mice with deficient expression of Notch1 receptor. J Neurosci Res 67:309–320

    PubMed  CAS  Google Scholar 

  95. Genoud S, Lappe-Siefke C, Goebbels S, Radtke F, Aguet M, Scherer SS, Suter U, Nave KA, Mantei N (2002) Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 158:709–718

    PubMed  CAS  Google Scholar 

  96. Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, Evans RM, Kadesch T (1998) A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 12:2269–2277

    PubMed  CAS  Google Scholar 

  97. Yamaguchi M, Tonou-Fujimori N, Komori A, Maeda R, Nojima Y, Li H, Okamoto H, Masai I (2005) Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132:3027–3043

    PubMed  CAS  Google Scholar 

  98. He Y, Dupree J, Wang J, Sandoval J, Li J, Liu H, Shi Y, Nave KA, Casaccia-Bonnefil P (2007) The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55:217–230

    PubMed  CAS  Google Scholar 

  99. He Y, Kim JY, Dupree J, Tewari A, Melendez-Vasquez C, Svaren J, Casaccia P (2010) Yy1 as a molecular link between neuregulin and transcriptional modulation of peripheral myelination. Nat Neurosci 13:1472–1480

    PubMed  CAS  Google Scholar 

  100. Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJ, Casaccia-Bonnefil P (2008) Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 11:1024–1034

    PubMed  CAS  Google Scholar 

  101. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401

    PubMed  CAS  Google Scholar 

  102. Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJ (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590

    PubMed  CAS  Google Scholar 

  103. Pohl HB, Porcheri C, Mueggler T, Bachmann LC, Martino G, Riethmacher D, Franklin RJ, Rudin M, Suter U (2011) Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage. J Neurosci 31:1069–1080

    PubMed  CAS  Google Scholar 

  104. Wei Q, Miskimins WK, Miskimins R (2005) Stage-specific expression of myelin basic protein in oligodendrocytes involves Nkx2.2-mediated repression that is relieved by the Sp1 transcription factor. J Biol Chem 280:16284–16294

    PubMed  CAS  Google Scholar 

  105. Ji S, Doucette JR, Nazarali AJ (2011) Sirt2 is a novel in vivo downstream target of Nkx2.2 and enhances oligodendroglial cell differentiation. J Mol Cell Biol. doi:10.1093/jmcb/mjr009

  106. Liu H, Hu Q, D’ercole AJ, Ye P (2009) Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia 57:1–12

    PubMed  Google Scholar 

  107. Liu H, Hu Q, Kaufman A, D’Ercole AJ, Ye P (2008) Developmental expression of histone deacetylase 11 in the murine brain. J Neurosci Res 86:537–543

    PubMed  CAS  Google Scholar 

  108. Valenzuela-Fernández A, Cabrero JR, Serrador JM, Sánchez-Madrid F (2008) HDAC6: a key regulator of cytoskeleton, cell migration and cell–cell interactions. Trends Cell Biol 18:291–297

    PubMed  Google Scholar 

  109. Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ (2007) Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 31:47–58

    PubMed  CAS  Google Scholar 

  110. Tokési N, Lehotzky A, Horváth I, Szabó B, Oláh J, Lau P, Ovádi J (2010) TPPP/p25 promotes tubulin acetylation by inhibiting histone deacetylase 6. J Biol Chem 285:17896–17906

    PubMed  Google Scholar 

  111. Lehotzky A, Lau P, Tokési N, Muja N, Hudson LD, Ovádi J (2010) Tubulin polymerization-promoting protein (TPPP/p25) is critical for oligodendrocyte differentiation. Glia 58:157–168

    PubMed  Google Scholar 

  112. Inoue T, Hiratsuka M, Osaki M, Oshimura M (2007) The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 6:1011–1018

    PubMed  CAS  Google Scholar 

  113. Southwood CM, Peppi M, Dryden S, Tainsky MA, Gow A (2007) Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res 32:187–195

    PubMed  CAS  Google Scholar 

  114. Chavan AV, Somani RR (2010) HDAC inhibitors—new generation of target specific treatment. Mini Rev Med Chem 10:1263–1276

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the Suter lab for many fruitful discussions and Dr. Ned Mantei for critical review of the manuscript. Research in the lab of the authors is supported by the Swiss National Science Foundation and the National Center of Competence in Research (NCCR), Neural Plasticity and Repair.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claire Jacob or Ueli Suter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, C., Lebrun-Julien, F. & Suter, U. How Histone Deacetylases Control Myelination. Mol Neurobiol 44, 303–312 (2011). https://doi.org/10.1007/s12035-011-8198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8198-9

Keywords

Navigation