Skip to main content
Log in

Production of diamond-like carbon powder in nano size

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Until now, researchers have conducted many studies about diamond-like carbon materials. We saw some shortcomings of a well-known method, and we decided to improve it. First, we performed the electrolysis stage of poly(hydridocarbyne) production. We continued with a pericyclic reaction by adding benzoyl peroxide or 2,2′-azobis(isobutyronitrile). Then, we heated the obtained poly(hydridocarbyne) powders at high temperatures in an argon atmosphere. The product produced according to the literature was the control group, and the others were test groups (E1 and E2). The samples were compared through X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscopy analysis. According to the results, diamond-like carbon powders can be produced in smaller particle sizes. They can be crystallized better by adding a new pericyclic reaction to the production method in the literature. The strength of the XRD peak of the diamond-like material produced with benzoyl peroxide was almost twice the other. The crystalline sizes were 13, 11, and 17 nm for the control group, E1 and E2, respectively. The vibration peaks of diamond-like materials were observed in the FTIR spectrum. In tunnelling electron microscope images, particle sizes of the control group, E1 and E2 were 135, 125 and 88 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Isberg J, Hammersberg J, Johansson E, Wikstrom T, Twitchen D J, Whitehead A J et al 2002 Science 297 1670

    Article  CAS  Google Scholar 

  2. Nebel C E, Yang N, Uetsuka H, Yamada T and Watanabe H 2008 J. Appl. Phys. 103 013711

    Article  Google Scholar 

  3. Luo J K, Fu Y Q, Le H R, Williams J A, Spearing S M and Milne W I 2007 Micromech. Microengin. 17 S147

    Article  CAS  Google Scholar 

  4. Chao J I, Perevedentseva E, Chung P H, Liu K K, Cheng C Y, Chang C C et al 2007 Biophys. J. 93 2199

    Article  CAS  Google Scholar 

  5. Robertson J 2006 Diam. Relat. Mater. 15 898

    Article  Google Scholar 

  6. Zhang L, Chen M, Li Z Y, Chen D H and Pan S R 2008 Mater. Lett. 62 1040

    Article  CAS  Google Scholar 

  7. Donnet J B, Fousson E, Wang T K, Samirant M, Baras C and Johnson M P 2000 Diam. Relat. Mater. 9 882

    Article  Google Scholar 

  8. Bianconi P A, Joray S J, Aldrich B L, Sumranjit J, Duffy D J, Long D P et al 2004 J. Am. Chem. Soc. 126 3191

    Article  CAS  Google Scholar 

  9. Nur Y, Pitcher M W, Seyyidoğlu S and Toppare L 2008 J. Macro. Sci. Part A: Pure Appl. Chem. 45 358

  10. Nur Y, Cengiz H M, Pitcher M W and Toppare L T 2009 J. Mater. Sci. 44 2774

    Article  CAS  Google Scholar 

  11. Sizov A I, Zvukova T M and Bulychev B M 2012 Rus. Chem. Bull. 61 668

    Article  CAS  Google Scholar 

  12. Katzenmeyer A M, Bayam Y, Logeeswaran V J, Pitcher M W, Nur Y, Seyyidoğlu S et al 2009 J. Nanomater. 2009 832327

    Article  Google Scholar 

  13. Filik J, May P W, Pearce S R J, Wild R K and Hallam K R 2003 Diam. Relat. Mater. 12 974

    Article  CAS  Google Scholar 

  14. Reddy K R, Sin B C, Ryu K S, Noh J and Lee Y 2019 Synt. Met. 159 1934

    Article  Google Scholar 

  15. Shetti N P, Malode S J, Nayak D S, Bagihalli G B, Reddy K R, Ravindnaradh K et al 2019 Microchem. J. 149 103985

    Article  CAS  Google Scholar 

  16. Reddy K R, Sin B C, Yoo C H, Park W, Ryu K S, Lee J S et al 2008 Scr. Mater. 58 1010

    Article  CAS  Google Scholar 

  17. Mehta A, Misha A, Basu S, Shetti N P, Reddy K R, Saleh T A et al 2019 J. Environ. Manage. 250 109486

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İ A Kariper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariper, İ.A. Production of diamond-like carbon powder in nano size. Bull Mater Sci 45, 210 (2022). https://doi.org/10.1007/s12034-022-02792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02792-4

Keywords

Navigation