Skip to main content

Advertisement

Log in

Fabrication of PVDF–HFP-based microporous membranes by the tape casting method as a separator for flexible Li-ion batteries

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Tape-casting method has been employed to prepare poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF–HFP)-based porous membranes with different microstructures. The prepared porous membranes are characterized by scanning electron microscopy, differential scanning calorimetry and tensile strength to analyse their morphological, thermal and mechanical properties. Polymer membrane with equal amount of urea and PVDF–HFP weight ratio is found as best membrane due to its high porosity, high liquid uptake, excellent thermal and mechanical properties. Owing to above-mentioned properties, the highest porous film (PM66) shows improved electrochemical properties with flexible carbon nanotube-based composite electrode, which makes it a potential candidate as a separator for the flexible Li-ion batteries. The discharge capacity of flexible lithium titanate electrode with PM66 was found to be ~142 mAh g–1 at 0.1 C rate and was stable up to 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tarascon J M and Armand M 2001 Nature 414 359

    Article  CAS  Google Scholar 

  2. Amjad S, Neelakrishnan S and Rudramoorthy R 2010 Renew. Sustain. Energy Rev. 14 1104

    Article  Google Scholar 

  3. Oh Y, Nam S, Wi S, Hong S and Park B 2012 Electron. Mater. Lett. 8 91

  4. Xu G, Ding L, Wu T, Xiang M and Yang F 2019 J. Polym. Res. 26 27

    Article  Google Scholar 

  5. Sabetzadeh N, Gharehaghaji A A and Javanbakht M 2019 J. Polym. Res. 26 20

    Article  Google Scholar 

  6. Lu W, Yuan Z, Zhao Y, Zhang H and Li X 2017 Chem. Soc. Rev. 46 2199

    Article  CAS  Google Scholar 

  7. Costa C M, Lee Y H, Kim J H, Lee S Y and Lanceros-Méndez S 2019 Energy Storage Mater. 22 346

    Article  Google Scholar 

  8. Lee H, Yanilmaz M, Toprakci O, Fu K and Zhang X 2014 Energy Environ. Sci. 7 3857

    Article  CAS  Google Scholar 

  9. Deimede V and Elmasides C 2015 Energy Technol. 3 359

    Article  Google Scholar 

  10. Huang X 2011 J. Solid State Electrochem. 15 649

    Article  CAS  Google Scholar 

  11. Lagadec M F, Zahn R and Wood V 2019 Nat. Energy 4 16

    Article  CAS  Google Scholar 

  12. Writer B (ed) 2019 Lithium-ion batteries: a machine-generated summary of current research (Springer Nature Switzerland: Springer) XXXV, p 247

  13. Yang M and Hou J 2012 Membranes 2 367

    Article  CAS  Google Scholar 

  14. Twiname E R and Mistler R E 2001 Science and technology 2nd edn (New York, NY: Elsevier) p 9083

  15. Pu W, He X, Wang L, Jiang C and Wan C 2006 J. Membr. Sci. 272 11

    Article  CAS  Google Scholar 

  16. Xiao W, Li X, Wang Z, Guo H, Li Y and Yang B 2012 Iran Polym. J. 21 755

  17. Chaturvedi P, Kanagaraj A B, Al Nahyan M S, Al Shibli H, Ashoor A A, Fadaq H et al 2019 Curr. Appl. Phys. 19 1150

    Article  Google Scholar 

  18. Koromilas N D, Anastasopoulos C, Oikonomou E K and Kallitsis J K 2018 Polymers 11 59

    Article  Google Scholar 

  19. Xiao W, Miao C, Yin X, Zheng Y, Tian M, Li H et al 2014 J. Power Sources 252 14

    Article  CAS  Google Scholar 

  20. Wang D, Dong N, Niu Y and Hui S 2019 J. Chem. https://doi.org/10.1155/2019/6853638

  21. Li Y, Xiao W, Li X, Miao C, Guo H and Wang Z 2014 Ionics 20 1217

    Article  CAS  Google Scholar 

  22. Yesappa L, Niranjana M, Ashok Kumar S P, Vijeth H, Basappa M, Dwivedi J et al 2018 RSC Adv. 8 15297

    Article  CAS  Google Scholar 

  23. Polat K 2020 Appl. Phys. A 126 497

    Article  CAS  Google Scholar 

  24. Feng Y, Li W L, Hou Y F, You Y, Cao W P, Zhang T D et al 2015 J. Mater. Chem. C 3 1250

    Article  CAS  Google Scholar 

  25. Rahmaniana N, Naderi S, Supuk E, Abbas R and Hassanpour A 2015 Procedia Eng. 102 174

    Article  Google Scholar 

  26. Amici J, Alidoost M, Francia C, Bodoardo S, Martinez Crespiera S, Amantia D et al 2016 Chem. Commun. 52 13683

    Article  CAS  Google Scholar 

  27. Pohjalainen E, Rauhala T, Valkeapaa M, Kallioinen J and Kallio T 2015 J. Phys. Chem. C 119 2277

    Article  CAS  Google Scholar 

  28. Kanagaraj A B, AlShibli H, Alkindi T S, Susantyoko R A, An B H, AlMheiri S et al 2018 Ionics 24 3685

    Article  CAS  Google Scholar 

  29. Qiao Y Q, Feng W L, Lia J and Shen T D 2017 Electrochim. Acta 232 323

    Article  CAS  Google Scholar 

  30. Babu B V, Babu K V, Aregai G T, Devi L S, Latha B M, Reddi M S et al 2018 Results Phys. 9 284

    Article  Google Scholar 

  31. Lei X, Zhang H, Chen Y, Wang W, Ye Y, Zheng C et al 2015 J. Alloys Compd. 626 280

    Article  CAS  Google Scholar 

  32. Luo W B, Wen L, Luo H Z, Song R S, Zhai Y C, Liu C et al 2019 New Carbon Mater. 29 287

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the United Arab Emirates Space Agency, Space Missions’ Science and Technology Directorate, Reference M04-2016-001 and Korea-UAE Joint R&D Technical Center (KUTC), under Award No. 8474000259 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prerna Chaturvedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, P., Kanagaraj, A.B., Alhammadi, A. et al. Fabrication of PVDF–HFP-based microporous membranes by the tape casting method as a separator for flexible Li-ion batteries. Bull Mater Sci 44, 161 (2021). https://doi.org/10.1007/s12034-021-02420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02420-7

Keywords

Navigation