Skip to main content

Advertisement

Log in

Synergistic effect of manganese and nitrogen codoping on photocatalytic properties of titania nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Titanium dioxide is an n-type semiconductor widely used in applications like catalysts, optoelectonic materials, ceramics, \(\hbox {H}_{{2}}\) generation, self-cleaning, water purification and solar cells. Sol–gel method has been chosen for nanoparticle synthesis because of its easy stoichiometry control, cost effectiveness and low temperature synthesis. In this study, titanium dioxide nanoparticles doped with different amounts of manganese (Mn) and nitrogen (N) were synthesized with sol–gel method. Crystal structure of undoped, Mn-doped, and Mn–N-codoped nanoparticles were determined with X-ray diffraction (XRD) analysis. Fourier transform infrared spectroscopy (FTIR) analysis was performed to identify the functional groups of nanoparticles. Photocatalytic analysis was caaried out by methylene blue degredation under UV light for 1 h. X-ray photoelectron spectroscopy (XPS) analysis was conducted to identify the chemical state and composition of the nanoparticles. Compared to the undoped \(\hbox {TiO}_{2}\), which had 79.37% efficiency, Mn-doped and Mn–N-codoped \(\hbox {TiO}_{2}\) nanoparticles have shown greater photocatalytic efficiency with 86.25 and 99.11% efficiencies, respectively. The results confirm that doping of manganese and nitrogen has affirmative effect on phptocatalytic properties of synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang S, Lian J S, Zheng W T and Jiang Q 2012 Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2012.09.040

  2. Tseng L T, Luo X, Bao N, Ding J, Li S and Yi J 2015 Mater. Lett., https://doi.org/10.1016/j.matlet.2016.02.021

  3. Oskam G 2006 J. Sol–Gel Sci. Technol., https://doi.org/10.1007/s10971-005-6621-2

  4. Khaki M R D, Shafeeyan M S, Raman A A A and Daud W M A W 2017 J. Environ. Manage., https://doi.org/10.1016/j.jenvman.2017.04.099

    Article  Google Scholar 

  5. Valentin C D, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C et al 2007 Chem. Phys., https://doi.org/10.1016/j.chemphys.2007.07.020

  6. Lee H Y and Kale G M 2008 Int. J. Appl. Ceram. Technol., https://doi.org/10.1111/j.1744-7402.2008.02248.x

  7. Ramakrishnan V M, Natarajan M, Santhanam A, Asokan V and Velauthapillai D 2018 Mater. Res. Bull., https://doi.org/10.1016/j.materresbull.2017.09.017

  8. Sanchez-Dominguez M, Liotta L F, Carlo G D, Pantaleo G, Venezia A M, Solans C et al 2010 Catal. Today, https://doi.org/10.1016/j.cattod.2010.05.026

  9. Rizal U, Das S, Kumar D, Swain B S and Swain B P 2016 AIP Conf. Proc., https://doi.org/10.1063/1.4945235

  10. Yang H, Zhang K, Shi R, Li X, Dong X and Yu Y 2006 J. Alloys Compd., https://doi.org/10.1016/j.jallcom.2005.06.061

  11. Suganya S and Vivekanandhan S 2018 J. Aust. Ceram. Soc., https://doi.org/10.1007/s41779-018-0251-y

  12. Baiju K V, Shukla S, Sandhya K S, James J and Warrier K G K 2007 J. Phys. Chem.,https://doi.org/10.1021/jp070452z

  13. Chauhan R, Kumar A and Chaudhary R P 2012 Spectrochim. Acta A: Molec. Biomolec. Spectrosc., https://doi.org/10.1016/j.saa.2012.08.009

  14. Feng H, Zhang M H and Yu L E 2012 Appl Catal. A: Gen., https://doi.org/10.1016/j.apcata.2011.11.014

  15. Ansari S A, Khan M M, Ansari M O and Cho M H 2016 New J. Chem., https://doi.org/10.1039/C5NJ03478G

  16. Jaiswal R, Patel N, Kothari D C and Miotello A 2012 Appl. Catal. B: Environ., https://doi.org/10.1016/j.apcatb.2012.06.030

  17. Papadimitrou V C, Stefanopouos V G, Romanias M N, Papagaiannakopoulos P, Sambani K, Tudose V et al 2011 Thin Solid Films, https://doi.org/10.1016/j.tsf.2011.07.073

  18. Colmenares J C, Aramendia M A, Marinas A, Marinas J M and Urbano F J 2006 Appl. Catal. A: Gen., https://doi.org/10.1016/j.apcata.2006.03.046

  19. Pelaez M, Tolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G et al 2012 Appl. Catal. B: Environ., https://doi.org/10.1016/j.apcatb.2012.05.036

  20. Zhuang H, Zhang Y, Chu Z, Long J, An X, Zhang H et al 2016 Phys. Chem. Chem. Phys., https://doi.org/10.1039/C6CP00580B

  21. Chen D, Jiang Z, Geng J, Wang Q and Yang D 2007 Ind. Eng. Chem. Res., https://doi.org/10.1021/ie061491k

  22. Li X, Zhang H, Zheng X, Yin Z and Wei L 2011 J. Environ., https://doi.org/10.1016/S1001-0742(10)60656-0

  23. Wei F, Ni L and Cui P 2008 J. Hazard. Mater., https://doi.org/10.1016/j.jhazmat.2007.12.018

  24. Yuan Z H, Jia J H and Zhang L D 2002 Mater. Chem. Phys., https://doi.org/10.1016/S0254-0584(01)00373-X

  25. Zhang Y, Lv F, Wu T, Yu L, Zhang R, Shen B et al 2011 Sol–Gel Sci. Technol., https://doi.org/10.1007/s10971-011-2449-0

  26. Su W, Zhao R and Zheng S 2016 Revista Matéria,https://doi.org/10.1590/S1517-707620160003.0057

  27. Yamamto T 2002 Thin Solid Films, https://doi.org/10.1016/S0040-6090(02)00655-7

  28. Gai Y, Li J, Li S S, Xia J B and Wei S H 2009 Phys. Rev. Lett., https://doi.org/10.1103/PhysRevLett.102.036402

  29. Thota S, Tirukkovalluri S R and Bojja S 2014 J. Environ. Chem. Eng., https://doi.org/10.1016/j.jece.2014.06.021

  30. Jagadale T C, Takale S P, Sonawane R S, Joshi H M, Patil S I, Kale B B et al 2008 J. Phys. Chem., https://doi.org/10.1021/jp803567f

  31. Binas V D, Sambani K, Maggos T, Katsanaki A and Kiriakidis G 2012 Appl.Catal. B: Environ., https://doi.org/10.1016/j.apcatb.2011.11.021

  32. Yoder C H 2006 Ionic compounds: applications of chemistry to mineralogy. Appendix 3: metallic covalent and ionic radii, p 171. Wiley Online Library, https://doi.org/10.1002/0470075104.app3

  33. Marami M B, Farahmandjou M and Khoshnevisan B 2018 J. Electron. Mater., https://doi.org/10.1007/s11664-018-6234-5

  34. Khairy M and Zakaria W 2014 Egyptian J. Pet. 23 419

    Google Scholar 

  35. Alexander V Malm and Jason C W Corbett 2019 Sci. Rep9 13519

    Article  Google Scholar 

  36. Kumar A and Dixit C K 2017 Methods for characterization of nanoparticles in advances in nanomedicine for the delivery of therapeutic nucleic acids, p 43, https://doi.org/10.1016/B978-0-08-100557-6.00003-1

  37. Haruhisa Kato, Naoko Ouchi and Ayako Nakamura 2017 Powder Technol. 315 68

    Article  CAS  Google Scholar 

  38. Abdullah A M, Al-Thani N J, Tawbi K and Al-Kandari H 2016 Arab. J. Chem. 9 229

    Article  CAS  Google Scholar 

  39. Deng Q R, Xia X H, Guo M L, Gao Y and Shao G 2011 Mater. Lett. 65 2051

    Article  CAS  Google Scholar 

  40. Murugan B and Ramaswamy A V 2008 J. Phys. Chem., https://doi.org/10.1021/jp806316x

  41. Batalovic K, Bundaleski N, Radakovic J, Abazovic N, Mitric M, Silva R A et al 2017 Phys. Chem. Chem. Phys. 19 7062

    Article  CAS  Google Scholar 

  42. Cheng X, Yu X, Xing Z and Wan J 2012 Energy Procedia16 598

    Article  CAS  Google Scholar 

  43. Yang G, Jiang Z, Shi H, Xiao T and Yan Z 2010 J. Mater. Chem., https://doi.org/10.1039/C0JM00376J

  44. Chen X and Burda C 2004 J. Phys. Chem. B, https://doi.org/10.1021/jp0469160

  45. Cong Y, Zhang J, Chen F and Anpo M 2007 J. Phys. Chem., https://doi.org/10.1021/jp0685030

  46. Xiong L, Li J, Yang B and Yu Y 2012 J. Nanomater., https://doi.org/10.1155/2012/831524

    Article  Google Scholar 

  47. Guo M, Gao Y and Shao G 2016 Phys. Chem. Chem. Phys. 18 2818

    Article  CAS  Google Scholar 

  48. Shouxin L, Xiaoyun C and Xi C 2006 Chinese J. Catal., https://doi.org/10.1016/S1872-2067(06)60037-5

  49. Zhang Y C, Yang M, Zhang G and Dionysiou D D 2013 Appl. Catal. B: Environ., https://doi.org/10.1016/j.apcatb.2013.05.023

  50. Devi L G, Kottam N and Kumar S G 2009 Catal. Lett. 131 612

    Article  CAS  Google Scholar 

  51. Perez-Larios A, Hernandez-Gordillo A, Morales-Mendoza G, Lartundo-Rojas L, Mantilla A and Gomez R 2016 Catal. Today 266 9

    Article  CAS  Google Scholar 

  52. Pomoni K, Vomvas A and Trapalis C 2008 Thin Solid Films 516 1271

    Article  CAS  Google Scholar 

  53. Girginov C, Stefchev P, Vitanov P and Dikov H 2012 J. Eng. Sci. Technol. Rev. 5 14

    Article  CAS  Google Scholar 

  54. Aware D V and Jadhav S S 2016 Appl. Nanosci6 965

    Article  CAS  Google Scholar 

  55. Hamadanian M, Vanani A, Behpour M and Esmaeily A S 2011 Desalination 281 319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Scientific and Technological Research Council of Turkey (TUBITAK) and Dokuz Eylul University, the Department of Scientific Research Projects have supported this work with the Project Number of 113R023 and 2014.KB.FEN.047, respectively. In addition, we would like to thank the Department of Metallurgical and Materials Engineering and Center for Fabrication and Application of Electronic Materials in Dokuz Eylul University, for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Birlik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birlik, I., Dagdelen, D. Synergistic effect of manganese and nitrogen codoping on photocatalytic properties of titania nanoparticles. Bull Mater Sci 43, 85 (2020). https://doi.org/10.1007/s12034-020-2041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2041-8

Keywords

Navigation