Skip to main content

Advertisement

Log in

Novel sonochemical green approach for synthesis of highly crystalline and thermally stable barium sulphate nanoparticles using Azadirachta indica leaf extract

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nanomaterial synthesized using plant extract is a viable and better alternative to chemical synthesis methods. A simple, nontoxic and inexpensive strategy, which meets the standard of green chemistry, has been introduced for the synthesis of highly crystalline and thermally stable barium sulphate (\(\hbox {BaSO}_{4})\) nanoparticles. This work reports ultrasonic-assisted green synthesis of \(\hbox {BaSO}_{4}\) nanoparticles using Azadirachta indica leaf extract at room temperature. The as-synthesized \(\hbox {BaSO}_{4}\) nanoparticles were subjected to various physiochemical characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission gun-scanning electron microscopy (FEG-SEM), thermogravimetric analysis (TGA) and energy-dispersive X-ray spectroscopy (EDX). XRD explored orthorhombic, highly crystalline and pure \(\hbox {BaSO}_{4}\) (JCPDS: 24-1035) with average crystallite size of 55.6 nm. FEG-SEM study revealed about size (\({>}80\,\hbox {nm}\)) of \(\hbox {BaSO}_{4}\) nanoparticles. Co-precipitation method was also employed to synthesize \(\hbox {BaSO}_{4}\) for comparison between biogenic and chemical methods. The size of \(\hbox {BaSO}_{4}\) nanoparticles obtained using co-precipitation method was very large with rod shape morphology. Novel sonochemical green method is preferable because of its control over particle size as well as morphology. FTIR study confirmed the formation of \(\hbox {BaSO}_{4}\) nanoparticles. High thermal tolerance and stability of \(\hbox {BaSO}_{4}\) nanoparticles was evidenced from single step weight loss in TGA. In addition, strong characteristic signals of barium, sulphur and oxygen in EDX confirmed the purity of ultrasonic-assisted green synthesized \(\hbox {BaSO}_{4}\) nanoparticles. Overall, this one pot, inexpensive and green sonochemical approach is a promising method for the synthesis of \(\hbox {BaSO}_{4}\) nanoparticles, which might be used for various commercial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fang C, Hou R, Zhou K, Hua F, Cong Y, Zhang J et al 2014 J. Mater. Chem. B 9 1264

    Article  Google Scholar 

  2. Wang K, Wu J, Ye L and Zeng H 2003 Compos. Part A Appl. Sci. Manuf. 34 1199

    Article  Google Scholar 

  3. Ramaswamy V, Vimalathithan R M, Ponnusamy V and Jose M T 2013 J. Lumin. 134 791

    Article  CAS  Google Scholar 

  4. Bakke T, Klungsoyr J and Sanni S 2013 Mar. Environ. Res. 92 154

    Article  CAS  Google Scholar 

  5. Bhide M K, Seshagiri T K, Ojha S and Godbole S V 2014 Bull. Mater. Sci. 37 123

    Article  CAS  Google Scholar 

  6. Esen Y and Yilmazer B 2011 Bull. Mater. Sci. 34 169

    Article  CAS  Google Scholar 

  7. Gupta A, Singh P and Shivakumara C 2010 Solid State Commun. 150 386

    Article  CAS  Google Scholar 

  8. Saraya E S I and Bakr I M 2011 Am. J. Nanotechnol. 2 106

    CAS  Google Scholar 

  9. Bala H, Fu W, Guo Y, Zhao J, Jiyang Y, Ding X et al 2006 Colloids Surf. A Physicochem. Eng. Asp. 274 71

    Article  CAS  Google Scholar 

  10. Qi L, Ma J, Cheng H and Zhao Z 1996 Colloids Surf. A Physicochem. Eng. Asp. 108 117

    Article  CAS  Google Scholar 

  11. Shen Y, Li C, Zhu X, Xie A, Qiu L and Zhu J 2007 J. Chem. Sci. 119 319

    Article  CAS  Google Scholar 

  12. Wu G, Zhou H and Zhu S 2007 Mater. Lett. 61 168

    Article  CAS  Google Scholar 

  13. Sun Y, Zhang F, Wu D and Zhu H 2014 Particuology 14 33

    Article  CAS  Google Scholar 

  14. Adityawarman D, Voigt A, Veit P and Sundmacher K 2016 MATEC Web Conf. 67 02017

    Article  Google Scholar 

  15. Wang Q A, Wang J X, Li M, Shao L and Chen J F 2009 Chem. Eng. J. 149 473478

    Google Scholar 

  16. Jeevarathinam D, Gupta A K, Pitchumani B and Mohan R 2011 Chem. Eng. J. 173 607

    Article  CAS  Google Scholar 

  17. Chen G, Luo G S, Xu J H and Wang J D 2004 Powder Technol. 139 180

    Article  CAS  Google Scholar 

  18. Guo S C, Evans D G, Li D Q and Duan X 2009 AlChE J. 55 2024

    Article  CAS  Google Scholar 

  19. Dehkordi A M and Vafaeimanesh A 2009 Ind. Eng. Chem. Res. 48 7574

    Article  CAS  Google Scholar 

  20. Schwarzer H C and Peukert W 2002 Chem. Eng. Technol. 25 657

    Article  CAS  Google Scholar 

  21. Joseph S and Mathew B 2015 Bull. Mater. Sci. 38 659

    Article  CAS  Google Scholar 

  22. Sutradhar P and Saha M 2015 Bull. Mater. Sci. 38 653

    Article  CAS  Google Scholar 

  23. Vinmathi V and Jacob S J P 2015 Bull. Mater. Sci. 38 625

    Article  CAS  Google Scholar 

  24. Devi H S, Singh T D and Singh H P 2017 Bull. Mater. Sci. 40 163

    Article  CAS  Google Scholar 

  25. Shimpi N G, Jain S, Karmakar N, Shah A, Kothari D C and Mishra S 2016 Appl. Surf. Sci. 390 17

    Article  CAS  Google Scholar 

  26. Jain S, Karmakar N, Shah A, Kothari D C, Mishra S and Shimpi N G 2017 Appl. Surf. Sci. 396 1317

    Article  CAS  Google Scholar 

  27. Mishra S, Shimpi N G and Patil U D 2007 J. Polym. Res. 14 449

    Article  CAS  Google Scholar 

  28. Mishra S and Shimpi N G 2007 J. Appl. Polym. Sci. 104 2018

    Article  CAS  Google Scholar 

  29. Shimpi N G, Mali A D, Hansora D P and Mishra S 2015 Nanosci. Nanoeng. 3 8

    CAS  Google Scholar 

  30. Ghanshyam B, Sonawane S S, Kailas L W, Ajit P R, Shirish H S and Shimpi N G 2017 Res. J. Chem. Environ. 21 39

    Google Scholar 

  31. Shimpi N G, Verma J and Mishra S 2009 Polym. Plast. Technol. Eng. 48 297

    Article  Google Scholar 

  32. Shimpi N G, Shirole S, Suryawanshi Y and Mishra S 2017 Adv. Polym. Technol. 36 160

    Article  CAS  Google Scholar 

  33. Jha M and Shimpi N G 2018 J. Genet. Eng. Biotechnol. 16 115

    Article  Google Scholar 

  34. Ramaswamy V, Vimalathithan R M and Ponnusamy V 2010 Adv. Appl. Sci. Res. 1 197

    CAS  Google Scholar 

  35. Alder H H and Kerr P F 1965 Am. Miner. 50 132

    Google Scholar 

  36. Shimpi N G and Jha M 2017 IJPSR 8 5100

    CAS  Google Scholar 

  37. Hopwood J D and Mann S 1997 Chem. Mater. 9 1819

    Article  CAS  Google Scholar 

  38. Liu J K, Wu Q S, Ding Y P and Wang S Y 2004 J. Mater. Res. 19 2803

    Article  CAS  Google Scholar 

  39. Cafiero L M, Baffi G, Chianese A and Jachuck R J J 2002 Ind. Eng. Chem. Res. 41 5240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (M Jha) is thankful to the University Grants Commission (UGC), New Delhi (India) for financial support to carry out this work. Authors are also thankful to SAIF, IIT Mumbai and Microanalytical Laboratory, Department of Chemistry, University of Mumbai, Mumbai for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navinchandra G Shimpi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 71 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, M., Ansari, S. & Shimpi, N.G. Novel sonochemical green approach for synthesis of highly crystalline and thermally stable barium sulphate nanoparticles using Azadirachta indica leaf extract. Bull Mater Sci 42, 22 (2019). https://doi.org/10.1007/s12034-018-1724-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1724-x

Keywords

Navigation