Skip to main content
Log in

Molecular dynamics study on the relaxation properties of bilayered graphene with defects

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by molecular dynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. The results show that great changes begin to occur in the morphology after introducing defects into BLG sheets. Compared with point defects, line defects have a significant effect on the relaxation properties of BLG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V et al 2004 Science 306 666

    Article  Google Scholar 

  2. Novoselov K S, Jiang D, Schedin F et al 2005 Proc. Natl. Acad. Sci. USA 102 10451

    Article  Google Scholar 

  3. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  Google Scholar 

  4. Tsai S-J, Ho J-H, Chiu Y-H and Lin M-F 2010 Physica E: Low-Dim. Syst. Nanostruct. 42 2796

    Article  Google Scholar 

  5. Nanda B and Satpathy S 2009 Phys. Rev. B 80 165430

    Article  Google Scholar 

  6. Lin Y-M and Avouris P 2008 Nano Lett. 8 2119

    Article  Google Scholar 

  7. Meyer J C, Geim AK, Katsnelson M, Novoselov K, Booth T and Roth S 2007 Nature 446 60

    Article  Google Scholar 

  8. Meyer J, Geim A, Katsnelson M et al 2007 Solid State Commun. 143 101

    Article  Google Scholar 

  9. Ishigami M, Chen J, Cullen W, Fuhrer M and Williams E 2007 Nano Lett. 7 1643

    Article  Google Scholar 

  10. Xu S, Irle S, Musaev D and Lin M 2007 J. Phys. Chem. C 111 1355

    Article  Google Scholar 

  11. Stone A J and Wales D J 1986 Chem. Phys. Lett. 128 501

    Article  Google Scholar 

  12. Telling R H, Ewels C P, Ahlam A and Heggie M I 2003 Nat. Mater. 2 333

    Article  Google Scholar 

  13. El-Barbary A, Telling R, Ewels C, Heggie M and Briddon P 2003 Phys. Rev. B 68 144107

    Article  Google Scholar 

  14. Krasheninnikov A, Nordlund K, Lehtinen P, Foster A, Ayuela A and Nieminen R 2004 Phys. Rev. B 69 073402

    Article  Google Scholar 

  15. Krasheninnikov A, Nordlund K, Sirviö M, Salonen E and Keinonen J 2001 Phys. Rev. B 63 245405

    Article  Google Scholar 

  16. Amorim R G, Fazzio A, Antonelli A, Novaes F D and da Silva A J 2007 Nano Lett. 7 2459

    Article  Google Scholar 

  17. Lee G-D, Wang C, Yoon E, Hwang N-M, Kim D-Y and Ho K 2005 Phys. Rev. Lett. 95 205501

    Article  Google Scholar 

  18. Lehtinen P, Foster A, Ayuela A, Krasheninnikov A, Nordlund K and Nieminen R 2003 Phys. Rev. Lett. 91 017202

    Article  Google Scholar 

  19. Nordlund K, Keinonen J and Mattila T 1996 Phys. Rev. Lett. 77 699

    Article  Google Scholar 

  20. Talapatra S, Ganesan P, Kim T et al 2005 Phys. Rev. Lett. 95 097201

    Article  Google Scholar 

  21. Ma Y, Foster A, Krasheninnikov A and Nieminen R 2005 Phys. Rev. B 72 205416

    Article  Google Scholar 

  22. Yin J-R, Wu W-H, Xie W, Ding Y-H and Zhang P 2015 Physica E: Low-Dim. Syst. Nanostruct. 68 102

    Article  Google Scholar 

  23. Wu W, Yin J, Xie W et al 2015 IET Micro–Nano Lett. 10 693

  24. Bernal J 1924 Proc. R. Soc. London Ser. A 106 749

    Article  Google Scholar 

  25. Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783

    Google Scholar 

  26. Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385

    Article  Google Scholar 

  27. Popov A M, Lebedeva I V, Knizhnik A A, Lozovik Y E and Potapkin B V 2011 Phys. Rev. B: Condens. Matter 84 045404

    Article  Google Scholar 

  28. Ohta T, Bostwick A, Mcchesney J, Seyller T, Horn K and Rotenberg E 2006 Science 313 951

    Article  Google Scholar 

  29. Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26

    Article  Google Scholar 

  30. Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F and Zettl A 2008 Nano Lett. 8 3582

    Article  Google Scholar 

  31. Lahiri J, Lin Y, Bozkurt P, Oleynik I I and Batzill M 2010 Nat. Nanotechnol. 5 326

    Article  Google Scholar 

  32. Han T W and He P F 2010 Acta Phys. Sin. 59 3408

    Google Scholar 

Download references

Acknowledgements

The financial support from the Natural Science Foundation of China (Numbers 21376199 and 51002128), Natural Science Foundation of Hunan Province (Number 2015JJ3115) and Scientific Research Foundation of Hunan Provincial Education Department (Numbers 17A205 and 15B235) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Huai Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yin, JR., Zhang, P. et al. Molecular dynamics study on the relaxation properties of bilayered graphene with defects. Bull Mater Sci 40, 1255–1261 (2017). https://doi.org/10.1007/s12034-017-1452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1452-7

Keywords

Navigation