Skip to main content
Log in

Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper proposed a simple, efficient and sensitive electrochemical sensor for dissolved oxygen (DO) detection based on a galvanic displacement synthesized reduced graphene oxide–silver nanoparticles (RGO/Ag) composite modified grassy carbon electrode (GCE). The synthesized RGO/Ag nanocomposite was characterized by UV–vis spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicate the graphene oxide (GO) has been successfully reduced during the galvanic displacement process and the average size of Ag nanoparticle is 52 nm. The RGO/Ag nanocomposite-modified GCE showed a significant enhancement of DO detection compared with bare and RGO-modified GCEs. Moreover, the proposed DO sensor also exhibited an excellent repeatability, reproducibility and anti-interference ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Oudot C, Gerard R, Morin P and Gningue I 1988, Limnol. Oceanogr. 33 146

    Article  Google Scholar 

  2. Suzuki Y, Nishide H and Tsuchida E 2000, Macromolecules 33 2530

    Article  Google Scholar 

  3. Bailey R T, Cruickshank F R, Deans G, Gillanders R N and Tedford M C 2003, Anal. Chim. Acta 487 101

    Article  Google Scholar 

  4. Shao X D, Liu H Y, Gao X F, Chen W Q and Song Z H 2007, Chem. Pap. 61 353

    Google Scholar 

  5. Rahim A, Santos L S S, Barros S B A, Kubota L T and Gushikem Y 2013, Sens. Actuators B: Chem. 177 231

    Article  Google Scholar 

  6. Santos L S, Landers R and Gushikem Y 2011, Talanta 85 1213

    Article  Google Scholar 

  7. Tsai T H, Yang C Y and Chen S M 2013, Int. J. Electrochem. Sci. 8 5250

    Google Scholar 

  8. Wang Y, Hosono T and Hasebe Y 2013, Microchim. Acta 180 1295

    Article  Google Scholar 

  9. Zhang D, Fang Y, Miao Z, Ma M and Chen Q 2013, J. Appl. Electrochem. 44 419

    Article  Google Scholar 

  10. Wu S, He Q, Tan C, Wang Y and Zhang H 2013, Small 9 1160

    Article  Google Scholar 

  11. Liu C, Alwarappan S, Chen Z, Kong X and Li C -Z 2010, Biosens. Bioelectron. 25 1829

    Article  Google Scholar 

  12. Stoller M D, Park S, Zhu Y, An J and Ruoff R S 2008, Nano Lett. 8 3498

    Article  Google Scholar 

  13. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J and Kim S J 2014, Appl. Catal. B: Environ. 148–149 22

    Article  Google Scholar 

  14. Zhang D, Fang Y, Miao Z, Ma M, Du X, Takahashi S, Anzai J -I and Chen Q 2013, Electrochim. Acta 107 656

    Article  Google Scholar 

  15. Li B, Liu T, Wang Y and Wang Z 2012, J. Colloid Interface Sci. 377 114

    Article  Google Scholar 

  16. Wang X, Zhi L, Tsao N, Tomović ž, Li J and Müllen K 2008, Angew. Chem. Int. Ed. 47 2990

    Article  Google Scholar 

  17. Fan Z -J, Kai W, Yan J, Wei T, Zhi L -J, Feng J, Ren Y -M, Song L -P and Wei F 2010, ACS Nano 5 191

    Article  Google Scholar 

  18. Li X, Wang Q, Zhao Y, Wu W, Chen J and Meng H 2013, J. Colloid Interface Sci. 411 69

    Article  Google Scholar 

  19. Wang M Y, Shen T, Wang M, Zhang D and Chen J 2013, Mater. Lett. 107 311

    Article  Google Scholar 

  20. Bello A, Fabiane M, Dodoo-Arhin D, Ozoemena K I and Manyala N 2014, J. Phys. Chem. Solids 75 109

    Article  Google Scholar 

  21. Guascito M R, Chirizzi D, Picca R A, Mazzotta E and Malitesta C 2011, Mater. Sci. Eng. C 31 606

    Article  Google Scholar 

  22. Glasspool W and Atkinson J 1998, Sens. Actuators B: Chem. 48 308

    Article  Google Scholar 

  23. Demarconnay L, Coutanceau C and Léger J M 2004, Electrochim. Acta 49 4513

    Article  Google Scholar 

  24. Kongkanand A and Kuwabata S 2003, Electrochem. Commun. 5 133

    Article  Google Scholar 

  25. Damos F S, Luz R C, Tanaka A A and Kubota L T 2010, Anal. Chim. Acta 664 144

    Article  Google Scholar 

  26. Luz R, Damos F S, Tanaka A A and Kubota L T 2006, Sens. Actuators B Chem. 114 1019

    Article  Google Scholar 

  27. Martin C S, Dadamos T R L and Teixeira M F S 2012, Sens. Actuators B: Chem. 175 111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LI FU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FU, L., ZHENG, Y., FU, Z. et al. Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite. Bull Mater Sci 38, 611–616 (2015). https://doi.org/10.1007/s12034-015-0900-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0900-5

Keywords

Navigation