Skip to main content
Log in

Hsa-miR-199a-5p Protect Cell Injury in Hypoxia Induces Myocardial Cells Via Targeting HIF1α

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is one of the most common global diseases. Recently, microRNA 199a-5p (miR-199a-5p) has been recognized as a vital regulator in several human diseases. Nevertheless, the function of miR-199a-5p and the associated downstream molecular mechanisms in myocardial injury remain undescribed. Here, we assessed the relative expression of miR-199a-5p in an oxidative stress injury model of human myocardial cells. The effects of miR-199a-5p on myocardial cell viability were determined by cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL), flow cytometry, and western blot assays. Online bioinformatic analysis was used to predict the aim of miR-199a-5p in cardiomyocyte injury, which was confirmed by dual-luciferase reporter assays. miR-199a-5p increased the growth rate of cardiomyocytes after treatment with a hypoxic environment. miR-199a-5p acted as an inhibitor directly targeted hypoxia-inducible factor-1 (HIF1α) expression, which was higher in the cardiomyocyte injury model than that in healthy myocardial cells. Upregulated HIF1α expression abolished miR-199a-5p-induced cell proliferation in the cardiomyocyte hypoxia model. Our results suggest that miR-199a-5p is a potential prognostic biomarker in myocardial damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Cahill, T. J., Choudhury, R. P., & Riley, P. R. (2017). Heart regeneration and repair after myocardial infarction: Translational opportunities for novel therapeutics. Nature Reviews Drug Discovery, 16, 699–717.

    Article  CAS  Google Scholar 

  2. Reed, G. W., Rossi, J. E., & Cannon, C. P. (2017). Acute myocardial infarction. Lancet, 389, 197–210.

    Article  Google Scholar 

  3. Boon, R. A., & Dimmeler, S. (2015). MicroRNAs in myocardial infarction. Nature Reviews Cardiology, 12, 135–142.

    Article  CAS  Google Scholar 

  4. Toldo, S., & Abbate, A. (2018). The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews Cardiology, 15, 203–214.

    Article  CAS  Google Scholar 

  5. Lévy, M., Maurey, C., Celermajer, D. S., Vouhé, P. R., Danel, C., Bonnet, D., & Israël-Biet, D. (2007). Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease. Journal of the American College of Cardiology, 49, 803–810.

    Article  Google Scholar 

  6. Bejerano, T., Etzion, S., Elyagon, S., Etzion, Y., & Cohen, S. (2018). Nanoparticle Delivery of miRNA-21 Mimic to Cardiac Macrophages Improves Myocardial Remodeling after Myocardial Infarction. Nano Letters, 18, 5885–5891.

    Article  CAS  Google Scholar 

  7. Qipshidze, K. N., Piell, K. M., Wang, E., & Cole, M. P. (2018). MicroRNAs as predictive biomarkers for myocardial injury in aged mice following myocardial infarction. Journal of Cellular Physiology, 233, 5214–5221.

    Article  Google Scholar 

  8. Goretti, E., Wagner, D. R., & Devaux, Y. (2014). miRNAs as biomarkers of myocardial infarction: A step forward towards personalized medicine? Trends in Molecular Medicine, 20, 716–725.

    Article  CAS  Google Scholar 

  9. Yang, Y., Cheng, H. W., Qiu, Y., Dupee, D., Noonan, M., Lin, Y. D., Fisch, S., Unno, K., Sereti, K. I., & Liao, R. (2015). MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circulation Research, 117, 450–459.

    Article  CAS  Google Scholar 

  10. Wang, K., Zhou, L. Y., Wang, J. X., Wang, Y., Sun, T., Zhao, B., Yang, Y. J., An, T., Long, B., Li, N., Liu, C. Y., Gong, Y., Gao, J. N., Dong, Y. H., Zhang, J., & Li, P. F. (2015). E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1. Nature Communications, 6, 7619.

    Article  CAS  Google Scholar 

  11. Halushka, P. V., Goodwin, A. J., & Halushka, M. K. (2019). Opportunities for microRNAs in the crowded field of cardiovascular biomarkers. Annual Review of Pathology: Mechanisms of Disease, 14, 211–238.

    Article  CAS  Google Scholar 

  12. Gao, F., Kataoka, M., Liu, N., Liang, T., Huang, Z. P., Gu, F., Ding, J., Liu, J., Zhang, F., Ma, Q., Wang, Y., Zhang, M., Hu, X., Kyselovic, J., Hu, X., Pu, W. T., Wang, J., Chen, J., & Wang, D. Z. (2019). Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nature Communications, 10, 1802.

    Article  Google Scholar 

  13. Wang, K., Liu, C. Y., Zhou, L. Y., Wang, J. X., Wang, M., Zhao, B., Zhao, W. K., Xu, S. J., Fan, L. H., Zhang, X. J., Feng, C., Wang, C. Q., Zhao, Y. F., & Li, P. F. (2015). APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nature Communications, 6, 6779.

    Article  CAS  Google Scholar 

  14. Garg, A., Foinquinos, A., Jung, M., Janssen-Peters, H., Biss, S., Bauersachs, J., Gupta, S. K., & Thum, T. (2020). MiRNA-181a is a novel regulator of aldosterone-mineralocorticoid receptor-mediated cardiac remodelling. European Journal of Heart Failure, 22, 1366–1377.

    Article  CAS  Google Scholar 

  15. He, F., Liu, H., Guo, J., Yang, D., Yu, Y., Yu, J., Yan, X., Hu, J., & Du, Z. (2018). Inhibition of MicroRNA-124 Reduces Cardiomyocyte Apoptosis Following Myocardial Infarction via Targeting STAT3. Cellular Physiology and Biochemistry, 51, 186–200.

    Article  CAS  Google Scholar 

  16. Garikipati, V., Verma, S. K., Jolardarashi, D., Cheng, Z., Ibetti, J., Cimini, M., Tang, Y., Khan, M., Yue, Y., Benedict, C., Nickoloff, E., Truongcao, M. M., Gao, E., Krishnamurthy, P., Goukassian, D. A., Koch, W. J., & Kishore, R. (2017). Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovascular Research, 113, 938–949.

    Article  CAS  Google Scholar 

  17. Liu, K., Ma, L., Zhou, F., Yang, Y., Hu, H. B., Wang, L., & Zhong, L. (2019). Identification of microRNAs related to myocardial ischemic reperfusion injury. Journal of Cellular Physiology, 234, 11380–11390.

    Article  CAS  Google Scholar 

  18. Cuevas-Durán, R. E., Medrano-Rodríguez, J. C., Sánchez-Aguilar, M., Soria-Castro, E., Rubio-Ruíz, M. E., Del, V. L., Sánchez-Mendoza, A., Torres-Narvaéz, J. C., Pastelín-Hernández, G., & Ibarra-Lara, L. (2017). Extracts of Crataegus oxyacantha and Rosmarinus officinalis attenuate ischemic myocardial damage by decreasing oxidative stress and regulating the production of cardiac vasoactive agents. International Journal Molecules Science, 18, 2412.

    Article  Google Scholar 

  19. Finley, L. W., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., Teruya-Feldstein, J., Moreira, P. I., Cardoso, S. M., Clish, C. B., Pandolfi, P. P., & Haigis, M. C. (2011). SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell, 19, 416–428.

    Article  CAS  Google Scholar 

  20. Acun, A., & Zorlutuna, P. (2017). Engineered myocardium model to study the roles of HIF-1α and HIF1A-AS1 in paracrine-only signaling under pathological level oxidative stress. Acta Biomaterialia, 58, 323–336.

    Article  CAS  Google Scholar 

  21. Ren, H., Shao, Y., Wu, C., Lv, C., Zhou, Y., & Wang, Q. (2020). VASH-1 regulates oxidative stress and fibrosis in diabetic kidney disease via SIRT1/HIF1α and TGFβ1/Smad3 signaling pathways. Frontiers in Molecular Biosciences, 7, 137.

    Article  CAS  Google Scholar 

  22. Luo, Z., Wu, F., Xue, E., Huang, L., Yan, P., Pan, X., & Zhou, Y. (2019). Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival by inducing HIF-1α in injured neuronal cells derived exosomes culture system. Cell Death & Disease, 10, 134.

    Article  Google Scholar 

  23. Hill, M., & Tran, N. (2018). MicroRNAs regulating MicroRNAs in cancer. Trends Cancer, 4, 465–468.

    Article  CAS  Google Scholar 

  24. Dallaire, A., Frédérick, P. M., & Simard, M. J. (2018). Somatic and germline microRNAs form distinct silencing complexes to regulate their target mRNAs differently. Developmental Cell, 47, 239-247.e4.

    Article  CAS  Google Scholar 

  25. Lindholm, E. M., Ragle, A. M., Haugen, M. H., Kleivi, S. K., Kristensen, V. N., Nebdal, D., Børresen-Dale, A. L., Lingjaerde, O. C., & Engebraaten, O. (2019). miRNA expression changes during the course of neoadjuvant bevacizumab and chemotherapy treatment in breast cancer. Molecular Oncology, 13, 2278–2296.

    Article  CAS  Google Scholar 

  26. Beavers, K. R., Nelson, C. E., & Duvall, C. L. (2015). MiRNA inhibition in tissue engineering and regenerative medicine. Advanced Drug Delivery Reviews, 88, 123–137.

    Article  CAS  Google Scholar 

  27. Huang, W., Hu, H., Zhang, Q., Wu, X., Wei, F., Yang, F., Gan, L., Wang, N., Yang, X., & Guo, A. Y. (2019). Regulatory networks in mechanotransduction reveal key genes in promoting cancer cell stemness and proliferation. Oncogene, 38, 6818–6834.

    Article  CAS  Google Scholar 

  28. Yang, L., Han, X., Zhang, C., Sun, C., Huang, S., Xiao, W., Gao, Y., Liang, Q., Luo, F., Lu, W., Fu, J., & Zhou, Y. (2020). Hsa_circ_0060450 negatively regulates type I interferon-induced inflammation by serving as miR-199a-5p sponge in type 1 diabetes mellitus. Frontier Immunology, 11, 576903.

    Article  CAS  Google Scholar 

  29. Raimondi, L., Amodio, N., Di Martino, M. T., Altomare, E., Leotta, M., Caracciolo, D., Gullà, A., Neri, A., Taverna, S., D’Aquila, P., Alessandro, R., Giordano, A., Tagliaferri, P., & Tassone, P. (2014). Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: In vitro and in vivo anti-tumor activity. Oncotarget, 5, 3039–3054.

    Article  Google Scholar 

  30. Li, X., Tian, Y., Tu, M. J., Ho, P. Y., Batra, N., & Yu, A. M. (2019). Bioengineered miR-27b-3p and miR-328-3p modulate drug metabolism and disposition via the regulation of target ADME gene expression. Acta Pharmaceutica Sinica B, 9, 639–647.

    Article  Google Scholar 

  31. Geng, L., Tang, X., Zhou, K., Wang, D., Wang, S., Yao, G., Chen, W., Gao, X., Chen, W., Shi, S., Shen, N., Feng, X., & Sun, L. (2019). MicroRNA-663 induces immune dysregulation by inhibiting TGF-β1 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cellular & Molecular Immunology, 16, 260–274.

    Article  CAS  Google Scholar 

  32. Ma, Y., Wu, Y., Chen, J., Huang, K., Ji, B., Chen, Z., Wang, Q., Ma, J., Shen, S., & Zhang, J. (2019). miR-10a-5p promotes chondrocyte apoptosis in osteoarthritis by targeting HOXA1. Molecules Therapy Nucleic Acids, 14, 398–409.

    Article  CAS  Google Scholar 

  33. Wang, R., Zuo, X., Wang, K., Han, Q., Zuo, J., Ni, H., Liu, W., Bao, H., Tu, Y., & Xie, P. (2018). MicroRNA-485-5p attenuates cell proliferation in glioma by directly targeting paired box 3. American Journal of Cancer Research, 8, 2507–2517.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ling, S., Shan, Q., Zhan, Q., Ye, Q., Liu, P., Xu, S., He, X., Ma, J., Xiang, J., Jiang, G., Wen, X., Feng, Z., Wu, Y., Feng, T., Xu, L., Chen, K., Zhang, X., Wei, R., Zhang, C., … Xu, X. (2020). USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1α/USP22 positive feedback loop upon TP53 inactivation. Gut, 69, 1322–1334.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Science and Technology Project of Guangzhou City (201804010067) and Science and Technology Planning Project of Guangdong Province (2017ZC0064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhu or Shao-Yi Zheng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HY., Lu, J., Wang, ZK. et al. Hsa-miR-199a-5p Protect Cell Injury in Hypoxia Induces Myocardial Cells Via Targeting HIF1α. Mol Biotechnol 64, 482–492 (2022). https://doi.org/10.1007/s12033-021-00423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00423-7

Keywords

Navigation