Skip to main content

Advertisement

Log in

Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Regeneration of bone tissue requires novel load bearing, biocompatible materials that support adhesion, spreading, proliferation, differentiation, mineralization, ECM production and maturation of bone-forming cells. Polycaprolactone (PCL) has many advantages as a biomaterial for scaffold production including tuneable biodegradation, relatively high mechanical toughness at physiological temperature. Electrospinning produces nanofibrous porous matrices that mimic many properties of natural tissue extracellular matrix with regard to surface area, porosity and fibre alignment. The biocompatibility and hydrophilicity of PCL nanofibres can be improved by combining PCL with other biomaterials to form composite scaffolds for bone regeneration. This work reviews the most recent research on synthesis, characterization and cellular response to nanofibrous PCL scaffolds and the composites of PCL with other natural and synthetic materials for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sarkar, R., Agrawal, A., & Ghosh, R. (2019). Preparation of ex-situ Mixed Sintered Biphasic Calcium Phosphate Ceramics from Its Co-Precipitated Precursors and Their Characterization. Transactions of the Indian Ceramic Society, 78(2), 101–107. https://doi.org/10.1080/0371750X.2019.1619484

    Article  CAS  Google Scholar 

  2. Dwivedi, R., et al. (2020). Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of Oral Biology and Craniofacial Research, 10(1), 381–388. https://doi.org/10.1016/j.jobcr.2019.10.003

    Article  PubMed  Google Scholar 

  3. Siddiqui, N., Asawa, S., Birru, B., Baadhe, R., & Rao, S. (2018). PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Molecular Biotechnology, 60(7), 506–532. https://doi.org/10.1007/s12033-018-0084-5

    Article  CAS  PubMed  Google Scholar 

  4. Mallick, S. P., Beyene, Z., Suman, D. K., Madhual, A., Singh, B. N., & Srivastava, P. (2019). Strategies towards Orthopaedic Tissue Engineered Graft Generation: Current Scenario and Application. Biotechnology and Bioprocess Engineering, 24(6), 854–869. https://doi.org/10.1007/s12257-019-0086-6

    Article  CAS  Google Scholar 

  5. B. Azimi, P. Nourpanah, M. Rabiee, and S. Arbab, “Poly (ε-caprolactone) Fiber: An Overview.” [Online]. Available: http://www.jeffjournal.org.

  6. Singh, B. N., et al. (2019). Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 133, 817–830. https://doi.org/10.1016/j.ijbiomac.2019.04.107

    Article  CAS  PubMed  Google Scholar 

  7. Sarvari, R., Agbolaghi, S., Beygi-Khosrowshahi, Y., Massoumi, B., & Bahadori, A. (2018). 3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering. J. Ultrafine Grained Nanostructured Mater., 51(2), 101–114. https://doi.org/10.22059/JUFGNSM.2018.02.02

    Article  CAS  Google Scholar 

  8. Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer-Polycaprolactone in the 21st century. Progress in Polymer Science, 35, 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  CAS  Google Scholar 

  9. Tahmasebi, A., et al. (2020). Micro-RNA-incorporated electrospun nanofibers improve osteogenic differentiation of human-induced pluripotent stem cells. J. Biomed. Mater. Res. - Part A, 108(2), 377–386. https://doi.org/10.1002/jbm.a.36824

    Article  CAS  Google Scholar 

  10. Hamlet, S. M., Cedryck Vaquette, D. W. H., Shah, A., & Ivanovski, S. (2017). 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering.m. Journal of Clinical Periodontology, 44(4), 428–437. https://doi.org/10.1111/ijlh.12426

    Article  CAS  PubMed  Google Scholar 

  11. Khodaverdi, E., Gharechahi, M., Alibolandi, M., Tekie, F. M., Khashyarmanesh, B., & Hadizadeh, F. (2016). Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone. Int. J. Pharm. Investig., 6(2), 78. https://doi.org/10.4103/2230-973X.177809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abedalwafa, M., Wang, F., Wang, L., & Li, C. (2013). Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Rev. Adv. Mater. Sci., 34(2), 123–140.

    CAS  Google Scholar 

  13. Mondal, D., Griffith, M., & Venkatraman, S. S. (2016). Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. Int. J. Polym. Mater. Polym. Biomater., 65(5), 255–265. https://doi.org/10.1080/00914037.2015.1103241

    Article  CAS  Google Scholar 

  14. Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. - Part B Rev., 19(6), 485–502. https://doi.org/10.1089/ten.teb.2012.0437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, M. S., Kim, J. H., Min, B. H., Chun, H. J., Han, D. K., & Lee, H. B. (2011). Polymeric scaffolds for regenerative medicine. Polymer Reviews, 51(1), 23–52. https://doi.org/10.1080/15583724.2010.537800

    Article  CAS  Google Scholar 

  16. Agrawal, P., Pramanik, K., & Bissoyi, A. (2018). Novel Blowspun Nanobioactive Glass Doped Polycaprolactone/Silk Fibroin Composite Nanofibrous Scaffold with Enhanced Osteogenic Property for Bone Tissue Engineering. Fibers Polym., 19(12), 2465–2477. https://doi.org/10.1007/s12221-018-8601-5

    Article  CAS  Google Scholar 

  17. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surfaces B Biointerfaces, 75(1), 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Y., Gu, Z., Liu, J., Huang, K., Liu, G., & Wu, J. (2020). Arginine based poly (ester amide)/ hyaluronic acid hybrid hydrogels for bone tissue Engineering. Carbohydrate Polymers, 230, 115640. https://doi.org/10.1016/j.carbpol.2019.115640

    Article  CAS  PubMed  Google Scholar 

  19. Bao, Z., Gu, Z., Xu, J., Zhao, M., Liu, G., & Wu, J. (2020). Acid-responsive composite hydrogel platform with space-controllable stiffness and calcium supply for enhanced bone regeneration. Chemical Engineering Journal, 396, 125353. https://doi.org/10.1016/j.cej.2020.125353

    Article  CAS  Google Scholar 

  20. Huang, K., Hou, J., Gu, Z., & Wu, J. (2019). Egg-White-/Eggshell-Based Biomimetic Hybrid Hydrogels for Bone Regeneration. ACS Biomaterials Science Engineering, 5(10), 5384–5391. https://doi.org/10.1021/acsbiomaterials.9b00990

    Article  CAS  PubMed  Google Scholar 

  21. Swieszkowski, W., Tuan, B. H. S., Kurzydlowski, K. J., & Hutmacher, D. W. (2007). Repair and regeneration of osteochondral defects in the articular joints. Biomolecular Engineering, 24(5), 489–495. https://doi.org/10.1016/j.bioeng.2007.07.014

    Article  CAS  PubMed  Google Scholar 

  22. Harikrishnan, P., & Sivasamy, A. (2020). Preparation, characterization of Electrospun Polycaprolactone-nano Zinc oxide composite scaffolds for Osteogenic applications. Nano-Structures and Nano-Objects. https://doi.org/10.1016/j.nanoso.2020.100518

    Article  Google Scholar 

  23. Kumar, A., et al. (2021). “Load-bearing biodegradable PCL-PGA-beta TCP scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(2), 193–200. https://doi.org/10.1002/jbm.b.34691

    Article  CAS  Google Scholar 

  24. Fadaie, M., Mirzaei, E., Geramizadeh, B., & Asvar, Z. (2018). Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydrate Polymers, 199, 628–640. https://doi.org/10.1016/j.carbpol.2018.07.061

    Article  CAS  PubMed  Google Scholar 

  25. Xiang, P., & Li, M. (2011). Cytocompatibility of electrospun nanofi ligature ber tubular scaffolds for small diameter tissue engineering blood vessels. International Journal of Biological Macromolecules, 49(3), 281–288. https://doi.org/10.1016/j.ijbiomac.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  26. Hiep, N. T., & Lee, B. T. (2010). Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. Journal of Materials Science. Materials in Medicine, 21(6), 1969–1978. https://doi.org/10.1007/s10856-010-4048-y

    Article  CAS  PubMed  Google Scholar 

  27. Grandi, C., Liddo, R., Paganin, P., Lora, S., Dalzoppo, D., Feltrin, G., Giraudo, C., Tommasini, M., Conconi, M., & Parnigotto, P. (2011). Porous alginate/poly(ε-caprolactone) scaffolds: Preparation, characterization and in vitro biological activity. International Journal of Molecular Medicine, 27(3), 455–467. https://doi.org/10.3892/ijmm.2010.593

    Article  CAS  PubMed  Google Scholar 

  28. Williamson, M. R., Black, R., & Kielty, C. (2006). PCL-PU composite vascular scaffold production for vascular tissue engineering: Attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials, 27(19), 3608–3616. https://doi.org/10.1016/j.biomaterials.2006.02.025

    Article  CAS  PubMed  Google Scholar 

  29. Fu, X., Sammons, R. L., Bertóti, I., Jenkins, M. J., & Dong, H. (2012). Active screen plasma surface modification of polycaprolactone to improve cell attachment. Journal of Biomedical Materials Research, 100(2), 314–320. https://doi.org/10.1002/jbm.b.31916

    Article  CAS  PubMed  Google Scholar 

  30. Schugens, C., Maquet, V., Grandfils, C., Jerome, R., & Teyssie, P. (1996). Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation. Polymer (Guildf), 37(6), 1027–1038. https://doi.org/10.1016/0032-3861(96)87287-9

    Article  CAS  Google Scholar 

  31. Peña, J., Corrales, T., Izquierdo-Barba, I., Doadrio, A. L., & Vallet-Regí, M. (2006). Long term degradation of poly(ε-caprolactone) films in biologically related fluids. Polymer Degradation and Stability, 91(7), 1424–1432. https://doi.org/10.1016/j.polymdegradstab.2005.10.016

    Article  CAS  Google Scholar 

  32. Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: Recent advances and challenges. Critical Reviews in Biomedical Engineering, 40(5), 363–408. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mkhabelal, V. J., & Ray, S. S. (2014). Poly(ε-caprolactone) nanocomposite scaffolds for tissue engineering: A brief overview. Journal of Nanoscience and Nanotechnology, 14(1), 535–545. https://doi.org/10.1166/jnn.2014.9055

    Article  CAS  Google Scholar 

  34. Wu, J., & Chu, C. C. (2012). Block copolymer of poly(ester amide) and polyesters: Synthesis, characterization, and in vitro cellular response. Acta Biomaterialia, 8(12), 4314–4323. https://doi.org/10.1016/j.actbio.2012.07.027

    Article  CAS  PubMed  Google Scholar 

  35. Gao, X., Han, S., Zhang, R., Liu, G., & Wu, J. (2019). Progress in electrospun composite nanofibers: Composition, performance and applications for tissue engineering. Journal of Materials Chemistry B, 7(45), 7075–7089. https://doi.org/10.1039/c9tb01730e

    Article  CAS  PubMed  Google Scholar 

  36. Huang, N. F., et al. (2006). Myotube assembly on nanofibrous and micropatterned polymers. Nano Letters, 6(3), 537–542. https://doi.org/10.1021/nl060060o

    Article  CAS  PubMed  Google Scholar 

  37. Wu, H., Fan, J., Chu, C. C., & Wu, J. (2010). Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. Journal of Materials Science. Materials in Medicine, 21(12), 3207–3215. https://doi.org/10.1007/s10856-010-4164-8

    Article  CAS  PubMed  Google Scholar 

  38. Tsai, K.-Y., Lin, H.-Y., Chen, Y.-W., Lin, C.-Y., Hsu, T.-T., & Kao, C.-T. (2017). Laser Sintered Magnesium-Calcium Silicate/Poly-ε-Caprolactone Scaffold for Bone Tissue Engineering. Materials (Basel), 10(1), 65. https://doi.org/10.3390/ma10010065

    Article  CAS  Google Scholar 

  39. Wu, F., Liu, C., O’Neill, B., Wei, J., & Yung, N. (2012). Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering. Applied Surface Science, 258(19), 7589–7595. https://doi.org/10.1016/j.apsusc.2012.04.094

    Article  CAS  Google Scholar 

  40. E. Malikmammadov, T. E. Tanir, A. Kiziltay, V. Hasirci, and N. Hasirci, PCL and PCL-based materials in biomedical applications, vol. 29, no. 7–9. Taylor & Francis, 2018.

  41. Aguirre-Chagala, Y. E., Altuzar, V., León-Sarabia, E., Tinoco-Magaña, J. C., Yañez-Limón, J. M., & Mendoza-Barrera, C. (2017). Physicochemical properties of polycaprolactone/collagen/elastin nanofibers fabricated by electrospinning. Materials Science and Engineering C, 76, 897–907. https://doi.org/10.1016/j.msec.2017.03.118

    Article  CAS  PubMed  Google Scholar 

  42. Dong, Z., Wu, Y., Wang, Q., Xie, C., Ren, Y., & Clark, R. L. (2012). Reinforcement of electrospun membranes using nanoscale Al 2O 3 whiskers for improved tissue scaffolds. Journal of Biomedical Materials Research, 100(4), 903–910. https://doi.org/10.1002/jbm.a.34027

    Article  CAS  PubMed  Google Scholar 

  43. S. Rao et al., “Molecular Biotechnology PCL based composite scaffold matrices for Tissue Engineering Applications PCL based composite scaffold matrices for Tissue Engineering Applications Nadeem Siddiqui , Simran Asawa , Bhaskar Birru , Ramaraju Baadhe , Sreenivasa Rao *,” 2018.

  44. Bhattacharjee, P., Naskar, D., Kim, H. W., Maiti, T. K., Bhattacharya, D., & Kundu, S. C. (2015). Non-mulberry silk fibroin grafted PCL nanofibrous scaffold: Promising ECM for bone tissue engineering. European Polymer Journal, 71, 490–509. https://doi.org/10.1016/j.eurpolymj.2015.08.025

    Article  CAS  Google Scholar 

  45. Behere, I., Pardawala, Z., Vaidya, A., Kale, V., & Ingavle, G. (2020). Osteogenic differentiation of an osteoblast precursor cell line using composite PCL-gelatin-nHAp electrospun nanofiber mesh. Int. J. Polym. Mater. Polym. Biomater. https://doi.org/10.1080/00914037.2020.1767619

    Article  Google Scholar 

  46. Ezati, M., Safavipour, H., Houshmand, B., & Faghihi, S. (2018). Development of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration. Prog. Biomater., 7(3), 225–237. https://doi.org/10.1007/s40204-018-0098-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Savarino, L., et al. (2007). The performance of poly-ε-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials, 28(20), 3101–3109. https://doi.org/10.1016/j.biomaterials.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  48. Lee, S. J., et al. (2019). Development of a three-dimensionally printed scaffold grafted with bone forming peptide-1 for enhanced bone regeneration with in vitro and in vivo evaluations. Journal of Colloid and Interface Science, 539, 468–480. https://doi.org/10.1016/j.jcis.2018.12.097

    Article  CAS  PubMed  Google Scholar 

  49. Lin, W. C., Yao, C., Huang, T. Y., Cheng, S. J., & Tang, C. M. (2019). Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dental Materials, 35(5), 751–762. https://doi.org/10.1016/j.dental.2019.02.023

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y., Liao, C., & Tjong, S. C. (2019). Synthetic biodegradable aliphatic polyester nanocomposites reinforced with nanohydroxyapatite and/or graphene oxide for bone tissue engineering applications. Nanomaterials. https://doi.org/10.3390/nano9040590

    Article  PubMed  PubMed Central  Google Scholar 

  51. Siddiqui, N., Asawa, S., Birru, B., Baadhe, R., & Rao, S. (2018). PCL - Based Composite Scaffold Matrices for Tissue Engineering Applications. Molecular Biotechnology, 60(0123456789), 506–532. https://doi.org/10.1007/s12033-018-0084-5

    Article  CAS  PubMed  Google Scholar 

  52. Kozehkonan, G. S., Salehi, M., Farzamfar, S., Ghanbari, H., Adabi, M., & Amani, A. (2019). Preparation and characterization of PCL polymeric scaffolds coated with chitosan/ bioactive glass/gelatin nanoparticles using the tips methodology for bone tissue engineering. Nanomed. J, 6(4), 311–320. https://doi.org/10.22038/nmj.2019.06.000009

    Article  CAS  Google Scholar 

  53. Bhattarai, D. P., Aguilar, L. E., Park, C. H., & Kim, C. S. (2018). A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes, 8(3), 62. https://doi.org/10.3390/membranes8030062

    Article  CAS  PubMed Central  Google Scholar 

  54. Belgheisi, G., Nazarpak, M. H., & Hashjin, M. S. (2020). Bone tissue engineering electrospun scaffolds based on layered double hydroxides with the ability to release vitamin D3: Fabrication, characterization and in vitro study. Applied Clay Science. https://doi.org/10.1016/j.clay.2019.105434

    Article  Google Scholar 

  55. Hanas, T., Sampath Kumar, T. S., Perumal, G., Doble, M., & Ramakrishna, S. (2018). Electrospun PCL/HA coated friction stir processed AZ31/HA composites for degradable implant applications. Journal of Materials Processing Technology, 252, 398–406. https://doi.org/10.1016/j.jmatprotec.2017.10.009

    Article  CAS  Google Scholar 

  56. Tajbakhsh, S., & Hajiali, F. (2017). A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering. Materials Science and Engineering C, 70, 897–912. https://doi.org/10.1016/j.msec.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  57. Ko, Y. M., Choi, D. Y., Jung, S. C., & Kim, B. H. (2015). Characteristics of plasma treated electrospun polycaprolactone (PCL) nanofiber scaffold for bone tissue engineering. Journal of Nanoscience and Nanotechnology, 15(1), 192–195. https://doi.org/10.1166/jnn.2015.8372

    Article  CAS  PubMed  Google Scholar 

  58. Gholipour-Kanani, A., et al. (2014). Tissue engineered poly(caprolactone)-chitosan-poly(vinyl alcohol) nanofibrous scaffolds for burn and cutting wound healing. IET Nanobiotechnology, 8(2), 123–131. https://doi.org/10.1049/iet-nbt.2012.0050

    Article  CAS  PubMed  Google Scholar 

  59. Sedghi, R., Shaabani, A., & Sayyari, N. (2020). Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2019.115707

    Article  PubMed  Google Scholar 

  60. Li, Z., & Tan, B. H. (2015). Towards the development of polycaprolactone based amphiphilic block copolymers: Molecular design, self-assembly and biomedical applications. Materials Science and Engineering C, 45, 620–634. https://doi.org/10.1016/j.msec.2014.06.003

    Article  CAS  Google Scholar 

  61. Hokmabad, V. R., Davaran, S., Aghazadeh, M., Alizadeh, E., Salehi, R., & Ramazani, A. (2019). Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering. Front. Chem. Sci. Eng., 13(1), 108–119. https://doi.org/10.1007/s11705-018-1742-7

    Article  CAS  Google Scholar 

  62. N. Siddiqui, S. Madala, S. Rao Parcha, and S. P. Mallick, “Osteogenic differentiation ability of human mesenchymal stem cells on Chitosan/Poly (Caprolactone)/nano beta Tricalcium Phosphate composite scaffolds,” Biomed. Phys. Eng. Express, 2020, doi: https://doi.org/10.1088/2057-1976/ab6550.

  63. Rezk, A. I., Rajan Unnithan, A., Hee Park, C., & Sang Kim, C. (2018). Rational design of bone extracellular matrix mimicking tri-layered composite nanofibers for bone tissue regeneration. Chemical Engineering Journal, 350, 812–823. https://doi.org/10.1016/j.cej.2018.05.185

    Article  CAS  Google Scholar 

  64. Ozbek, B., et al. (2018). Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. Journal of the Australian Ceramic Society, 54(2), 251–260. https://doi.org/10.1007/s41779-017-0149-0

    Article  CAS  Google Scholar 

  65. Chen, M., Patra, P. K., Warner, S. B., & Bhowmick, S. (2007). Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Engineering, 13(3), 579–587. https://doi.org/10.1089/ten.2006.0205

    Article  CAS  PubMed  Google Scholar 

  66. Luo, J., et al. (2018). 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surfaces B Biointerfaces, 163, 369–378. https://doi.org/10.1016/j.colsurfb.2017.12.043

    Article  CAS  PubMed  Google Scholar 

  67. Sattary, M., Khorasani, M. T., Rafienia, M., & Rozve, H. S. (2018). Incorporation of nanohydroxyapatite and vitamin D3 into electrospun PCL/Gelatin scaffolds: The influence on the physical and chemical properties and cell behavior for bone tissue engineering. Polymers for Advanced Technologies, 29(1), 451–462. https://doi.org/10.1002/pat.4134

    Article  CAS  Google Scholar 

  68. Sedghi, R., Sayyari, N., Shaabani, A., Niknejad, H., & Tayebi, T. (2018). Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer (Guildf), 142, 244–255. https://doi.org/10.1016/j.polymer.2018.03.045

    Article  CAS  Google Scholar 

  69. Sharifi, F., Atyabi, S. M., Norouzian, D., Zandi, M., Irani, S., & Bakhshi, H. (2018). Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. International Journal of Biological Macromolecules, 115, 243–248. https://doi.org/10.1016/j.ijbiomac.2018.04.045

    Article  CAS  PubMed  Google Scholar 

  70. Ramanathan, G., Liji, L. S., Fardim, P., & Sivagnanam, U. T. (2018). Fabrication of 3D dual-layered nanofibrous graft loaded with layered double hydroxides and their effects in osteoblastic behavior for bone tissue engineering. Process Biochemistry, 64, 255–259. https://doi.org/10.1016/j.procbio.2017.09.025

    Article  CAS  Google Scholar 

  71. Ahn, G. Y., Ryu, T. K., Choi, Y. R., Park, J. R., Lee, M. J., & Choi, S. W. (2018). Fabrication and optimization of Nanodiamonds-composited poly(ε-caprolactone) fibrous matrices for potential regeneration of hard tissues. Biomater. Res. https://doi.org/10.1186/s40824-018-0126-x

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ding, Y., et al. (2018). Electrospun Polyhydroxybutyrate/Poly(ϵ-caprolactone)/Sol-Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Interfaces, 10(17), 14540–14548. https://doi.org/10.1021/acsami.8b02656

    Article  CAS  Google Scholar 

  73. PranavKumar Shadamarshan, R., Balaji, H., Rao, H. S., Balagangadharan, K., Viji Chandran, S., & Selvamurugan, N. (2018). Fabrication of PCL/PVP Electrospun Fibers loaded with Trans-anethole for Bone Regeneration in vitro. Colloids Surfaces B Biointerfaces, 171, 698–706. https://doi.org/10.1016/j.colsurfb.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, K., Wang, Y., Sun, T., Wang, B., & Zhang, H. (2018). Bioinspired Surface Functionalization for Improving Osteogenesis of Electrospun Polycaprolactone Nanofibers. Langmuir, 34(50), 15544–15550. https://doi.org/10.1021/acs.langmuir.8b03357

    Article  CAS  PubMed  Google Scholar 

  75. Wang, Y., Cui, W., Chou, J., Wen, S., Sun, Y., & Zhang, H. (2018). Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids Surfaces B Biointerfaces, 172, 90–97. https://doi.org/10.1016/j.colsurfb.2018.08.032

    Article  CAS  PubMed  Google Scholar 

  76. Lee, S. Y., et al. (2018). Synthesis and Characterization of Polycaprolactone-Based Polyurethanes for the Fabrication of Elastic Guided Bone Regeneration Membrane. BioMed Research International. https://doi.org/10.1155/2018/3240571

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gong, M., et al. (2018). Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum. Colloids Surfaces B Biointerfaces, 170, 201–209. https://doi.org/10.1016/j.colsurfb.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  78. Rijal, N. P., Adhikari, U., Khanal, S., Pai, D., Sankar, J., & Bhattarai, N. (2018). “Magnesium oxide-polyε-caprolactone-chitosan-based composite nanofiber for tissue engineering applications”, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 228, 18–27. https://doi.org/10.1016/j.mseb.2017.11.006

    Article  CAS  Google Scholar 

  79. Kai, D., et al. (2016). Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomedical Materials. https://doi.org/10.1088/1748-6041/11/1/015007

    Article  PubMed  Google Scholar 

  80. Shkarina, S., et al. (2018). 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: High-resolution tomography and in vitro study. Sci. Rep. https://doi.org/10.1038/s41598-018-27097-7

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cheng, G., et al. (2018). Promoting osteogenic differentiation in pre-osteoblasts and reducing tibial fracture healing time using functional nanofibers. Nano Res., 11(7), 3658–3677. https://doi.org/10.1007/s12274-017-1934-3

    Article  CAS  Google Scholar 

  82. Aragón, J., Salerno, S., De Bartolo, L., Irusta, S., & Mendoza, G. (2018). Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. Journal of Colloid and Interface Science, 531, 126–137. https://doi.org/10.1016/j.jcis.2018.07.029

    Article  CAS  PubMed  Google Scholar 

  83. Hokmabad, V. R., Davaran, S., Aghazadeh, M., Alizadeh, E., Salehi, R., & Ramazani, A. (2018). A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering. Tissue Eng. Regen. Med., 15(6), 735–750. https://doi.org/10.1007/s13770-018-0140-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. R. K. Meka, S. Kumar Verma, V. Agarwal, and K. Chatterjee, (2018)“In Situ Silication of Polymer Nanofibers to Engineer Multi-Biofunctional Composites,” ChemistrySelect, doi: https://doi.org/10.1002/slct.201703124.

  85. Lobo, A. O., et al. (2018). Electrospun nanofiber blend with improved mechanical and biological performance. International Journal of Nanomedicine, 13, 7891–7903. https://doi.org/10.2147/IJN.S175619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao, X., et al. (2015). Calcium phosphate coated Keratin-PCL scaffolds for potential bone tissue regeneration. Materials Science and Engineering C, 49, 746–753. https://doi.org/10.1016/j.msec.2015.01.084

    Article  CAS  PubMed  Google Scholar 

  87. Alehosseini, M., Golafshan, N., Kharaziha, M., Fathi, M., & Edris, H. (2018). Hemocompatible and Bioactive Heparin-Loaded PCL-α-TCP Fibrous Membranes for Bone Tissue Engineering. Macromolecular Bioscience. https://doi.org/10.1002/mabi.201800020

    Article  PubMed  Google Scholar 

  88. Shirani, K., Nourbakhsh, M. S., & Rafienia, M. (2019). Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater., 68(10), 607–615. https://doi.org/10.1080/00914037.2018.1482461

    Article  CAS  Google Scholar 

  89. Hwang, T. I., Kim, J. I., Joshi, M. K., Park, C. H., & Kim, C. S. (2019). Simultaneous regeneration of calcium lactate and cellulose into PCL nanofiber for biomedical application. Carbohydrate Polymers, 212, 21–29. https://doi.org/10.1016/j.carbpol.2019.01.085

    Article  CAS  PubMed  Google Scholar 

  90. Dalgic, A. D., Atila, D., Karatas, A., Tezcaner, A., & Keskin, D. (2019). Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Materials Science and Engineering C, 100, 735–746. https://doi.org/10.1016/j.msec.2019.03.046

    Article  CAS  PubMed  Google Scholar 

  91. Alissa Alam, H., Dalgic, A. D., Tezcaner, A., Ozen, C., & Keskin, D. (2020). A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater., 69(6), 339–350. https://doi.org/10.1080/00914037.2019.1581198

    Article  CAS  Google Scholar 

  92. Manakhov, A., et al. (2019). Bioactive TiCaPCON-coated PCL nanofibers as a promising material for bone tissue engineering. Applied Surface Science, 479, 796–802. https://doi.org/10.1016/j.apsusc.2019.02.163

    Article  CAS  Google Scholar 

  93. Shapourzadeh, A., Atyabi, S. M., Irani, S., & Bakhshi, H. (2020). Enhanced adipose mesenchymal stem cells proliferation by carboxymethyl-chitosan functionalized polycaprolactone nanofiber. Iran Biomedical Journal, 24(4), 236–242. https://doi.org/10.29252/ibj.24.4.236

    Article  PubMed  Google Scholar 

  94. Tao, F., et al. (2020). Carboxymethyl chitosan/sodium alginate-based micron-fibers fabricated by emulsion electrospinning for periosteal tissue engineering. Mater: Des. https://doi.org/10.1016/j.matdes.2020.108849

    Book  Google Scholar 

  95. Rashtchian, M., Hivechi, A., Bahrami, S. H., Milan, P. B., & Simorgh, S. (2020). Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2020.115873

    Article  PubMed  Google Scholar 

  96. Xing, X., et al. (2020). Magnesium-containing silk fibroin/polycaprolactone electrospun nanofibrous scaffolds for accelerating bone regeneration. Arabian Journal of Chemistry, 13(5), 5526–5538. https://doi.org/10.1016/j.arabjc.2020.03.031

    Article  CAS  Google Scholar 

  97. A. I. Rezk, D. P. Bhattarai, J. Park, C. H. Park, and C. S. Kim, “Polyaniline-coated titanium oxide nanoparticles and simvastatin-loaded poly(ε-caprolactone) composite nanofibers scaffold for bone tissue regeneration application,” Colloids Surfaces B Biointerfaces, vol. 192, Aug. 2020, doi: https://doi.org/10.1016/j.colsurfb.2020.111007.

  98. Guo, Z., Xu, J., Ding, S., Li, H., Zhou, C., & Li, L. (2015). In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 26(15), 989–1001. https://doi.org/10.1080/09205063.2015.1065598

    Article  CAS  Google Scholar 

  99. B. Maharjan et al., “In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering,” Mater. Sci. Eng. C, vol. 114, Sep. 2020, doi: https://doi.org/10.1016/j.msec.2020.111056.

  100. Awasthi, G. P., Kaliannagounder, V. K., Maharjan, B., Lee, J. Y., Park, C. H., & Kim, C. S. (2020). Albumin-induced exfoliation of molybdenum disulfide nanosheets incorporated polycaprolactone/zein composite nanofibers for bone tissue regeneration. Mater: Sci. Eng. C. https://doi.org/10.1016/j.msec.2020.111162

    Book  Google Scholar 

  101. Arbade, G. K., Srivastava, J., Tripathi, V., Lenka, N., & Patro, T. U. (2020). Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. Journal of Biomaterials Science, Polymer Edition. https://doi.org/10.1080/09205063.2020.1769799

    Article  Google Scholar 

  102. Didekhani, R., Sohrabi, M. R., Soleimani, M., Seyedjafari, E., & Hanaee-Ahvaz, H. (2020). Incorporating PCL nanofibers with oyster shell to improve osteogenic differentiation of mesenchymal stem cells. Polymer Bulletin, 77(2), 701–715. https://doi.org/10.1007/s00289-019-02750-x

    Article  CAS  Google Scholar 

  103. Liang, R., et al. (2020). Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials. https://doi.org/10.1016/j.biomaterials.2019.119601

    Article  PubMed  Google Scholar 

  104. Perumal, G., Sivakumar, P. M., Nandkumar, A. M., & Doble, M. (2020). Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration. Mater: Sci. Eng. C. https://doi.org/10.1016/j.msec.2019.110527

    Book  Google Scholar 

  105. Liu, L., et al. (2020). Tricalcium Phosphate Sol-Incorporated Poly(ε-caprolactone) Membrane with Improved Mechanical and Osteoinductive Activity as an Artificial Periosteum. ACS Biomater. Sci. Eng. https://doi.org/10.1021/acsbiomaterials.0c00511

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhu, J., Ye, H., Deng, D., Li, J., & Wu, Y. (2020). Electrospun metformin-loaded polycaprolactone/chitosan nanofibrous membranes as promoting guided bone regeneration membranes: Preparation and characterization of fibers, drug release, and osteogenic activity in vitro. Journal of Biomaterials Applications, 34(9), 1282–1293. https://doi.org/10.1177/0885328220901807

    Article  CAS  PubMed  Google Scholar 

  107. Smaida, R., et al. (2020). Potential implantable nanofibrous biomaterials combined with stem cells for subchondral bone regeneration. Materials. https://doi.org/10.3390/ma13143087

    Article  PubMed  PubMed Central  Google Scholar 

  108. Pattanashetti, N. A., Achari, D. D., Torvi, A. I., Doddamani, R. V., & Kariduraganavar, M. Y. (2020). Development of multilayered nanofibrous scaffolds with PCL and PVA:NaAlg using electrospinning technique for bone tissue regeneration. Materialia. https://doi.org/10.1016/j.mtla.2020.100826

    Article  Google Scholar 

  109. Hwang, T. I., et al. (2020). In Situ Biological Transmutation of Catalytic Lactic Acid Waste into Calcium Lactate in a Readily Processable Three-Dimensional Fibrillar Structure for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 12(16), 18197–18210. https://doi.org/10.1021/acsami.9b19997

    Article  CAS  Google Scholar 

  110. Heydari, Z., Mohebbi-Kalhori, D., & Afarani, M. S. (2017). Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Materials Science and Engineering C, 81, 127–132. https://doi.org/10.1016/j.msec.2017.07.041

    Article  CAS  PubMed  Google Scholar 

  111. Suryavanshi, A., Khanna, K., Sindhu, K. R., Bellare, J., & Srivastava, R. (2017). Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: In-vitro and in-vivo evaluation. Biomedical Materials. https://doi.org/10.1088/1748-605X/aa792b

    Article  PubMed  Google Scholar 

  112. Mohammadi, S., Shafiei, S. S., Asadi-Eydivand, M., Ardeshir, M., & Solati-Hashjin, M. (2017). Graphene oxide-enriched poly(ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications. Journal of Bioactive and Compatable Polymers, 32(3), 325–342. https://doi.org/10.1177/0883911516668666

    Article  CAS  Google Scholar 

  113. Z. Guler, J. C. Silva, and A. Sezai Sarac, “RGD functionalized poly(ε-caprolactone)/poly(m-anthranilic acid) electrospun nanofibers as high-performing scaffolds for bone tissue engineering RGD functionalized PCL/P3ANA nanofibers,” Int. J. Polym. Mater. Polym. Biomater., 2017, doi: https://doi.org/10.1080/00914037.2016.1190929.

  114. Hosseini, Y., Emadi, R., & Kharaziha, M. (2017). Surface modification of PCL-diopside fibrous membrane via gelatin immobilization for bone tissue engineering. Materials Chemistry and Physics, 194, 356–366. https://doi.org/10.1016/j.matchemphys.2017.03.051

    Article  CAS  Google Scholar 

  115. Kareem, M. M., Hodgkinson, T., Sanchez, M. S., Dalby, M. J., & Tanner, K. E. (2019). Hybrid core-shell scaffolds for bone tissue engineering. Biomedical Materials. https://doi.org/10.1088/1748-605X/aafbf1

    Article  PubMed  Google Scholar 

  116. Venugopal, E., Sahanand, K. S., Bhattacharyya, A., & Rajendran, S. (2019). “Electrospun PCL nanofibers blended with Wattakaka volubilis active phytochemicals for bone and cartilage tissue engineering”, Nanomedicine Nanotechnology. Biologie et Médecine. https://doi.org/10.1016/j.nano.2019.102044

    Article  Google Scholar 

  117. Gönen, S. Ö., Erol Taygun, M., & Küçükbayrak, S. (2016). Fabrication of bioactive glass containing nanocomposite fiber mats for bone tissue engineering applications. Compos: Struct. https://doi.org/10.1016/j.compstruct.2015.11.033

    Book  Google Scholar 

  118. Jing, X., Mi, H. Y., Wang, X. C., Peng, X. F., & Turng, L. S. (2015). Shish-Kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. ACS Applied Materials & Interfaces, 7(12), 6955–6965. https://doi.org/10.1021/acsami.5b00900

    Article  CAS  Google Scholar 

  119. Rajzer, I., Rom, M., Menaszek, E., & Pasierb, P. (2015). Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Materials Letters, 138, 60–63. https://doi.org/10.1016/j.matlet.2014.09.077

    Article  CAS  Google Scholar 

  120. Jain, S., Krishna Meka, S. R., & Chatterjee, K. (2016). Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed: Mater. https://doi.org/10.1088/1748-6041/11/5/055007

    Book  Google Scholar 

  121. Su, W. T., Wu, P. S., & Huang, T. Y. (2015). Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate. Materials Science and Engineering C, 46, 427–434. https://doi.org/10.1016/j.msec.2014.10.076

    Article  CAS  PubMed  Google Scholar 

  122. Yun, Y. P., et al. (2014). The effect of alendronate-loaded polycarprolactone nanofibrous scaffolds on osteogenic differentiation of adipose-derived stem cells in bone tissue regeneration. Journal of Biomedical Nanotechnology, 10(6), 1080–1090. https://doi.org/10.1166/jbn.2014.1819

    Article  CAS  PubMed  Google Scholar 

  123. Cheng, Y., Ramos, D., Lee, P., Liang, D., Yu, X., & Kumbar, S. G. (2014). Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: Bone tissue engineering. Journal of Biomedical Nanotechnology, 10(2), 287–298. https://doi.org/10.1166/jbn.2014.1753

    Article  CAS  PubMed  Google Scholar 

  124. Lee, J. Y., Chung, J., Chung, W. J., & Kim, G. (2016). Fabrication and in vitro biocompatibilities of fibrous biocomposites consisting of PCL and M13 bacteriophage-conjugated alginate for bone tissue engineering. J. Mater. Chem. B, 4(4), 656–665. https://doi.org/10.1039/c5tb01748c

    Article  CAS  PubMed  Google Scholar 

  125. Bhattacharjee, P., et al. (2016). Potential of inherent RGD containing silk fibroin–poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering. Cell and Tissue Research, 363(2), 525–540. https://doi.org/10.1007/s00441-015-2232-6

    Article  CAS  PubMed  Google Scholar 

  126. Pajoumshariati, S., Yavari, S. K., & Shokrgozar, M. A. (2016). Physical and Biological Modification of Polycaprolactone Electrospun Nanofiber by Panax Ginseng Extract for Bone Tissue Engineering Application. Annals of Biomedical Engineering, 44(5), 1808–1820. https://doi.org/10.1007/s10439-015-1478-1

    Article  PubMed  Google Scholar 

  127. Kijeńska, E., Zhang, S., Prabhakaran, M. P., Ramakrishna, S., & Swieszkowski, W. (2016). Nanoengineered biocomposite tricomponent polymer based matrices for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater., 65(16), 807–815. https://doi.org/10.1080/00914037.2016.1163561

    Article  CAS  Google Scholar 

  128. Singh, R. K., et al. (2014). Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PLoS ONE. https://doi.org/10.1371/journal.pone.0091584

    Article  PubMed  PubMed Central  Google Scholar 

  129. Liu, Y., Cui, H., Zhuang, X., Wei, Y., & Chen, X. (2014). Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Acta Biomaterialia, 10(12), 5074–5080. https://doi.org/10.1016/j.actbio.2014.08.036

    Article  CAS  PubMed  Google Scholar 

  130. Nguyen, T. H., & Lee, B. T. (2013). In vitro and in vivo studies of rhBMP2-coated PS/PCL fibrous scaffolds for bone regeneration. Journal of Biomedical Materials Research. https://doi.org/10.1002/jbm.a.34382

    Article  PubMed  Google Scholar 

  131. Hivechi, A., Bahrami, S. H., Siegel, R. A., Milan, P. B., & Amoupour, M. (2020). In vitro and in vivo studies of biaxially electrospun poly(caprolactone)/gelatin nanofibers, reinforced with cellulose nanocrystals, for wound healing applications. Cellulose, 27(9), 5179–5196. https://doi.org/10.1007/s10570-020-03106-9

    Article  CAS  Google Scholar 

  132. S. Gniesmer et al., “Vascularization and biocompatibility of poly(ε-caprolactone) fiber mats for rotator cuff tear repair,” PLoS One, vol. 15, no. 1, Jan. 2020, doi: https://doi.org/10.1371/journal.pone.0227563.

  133. Wang, Y., et al. (2019). Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale, 11(1), 60–71. https://doi.org/10.1039/c8nr07329e

    Article  CAS  Google Scholar 

  134. Gao, X., et al. (2016). Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Applied Materials & Interfaces, 8(5), 3499–3515. https://doi.org/10.1021/acsami.5b12413

    Article  CAS  Google Scholar 

  135. Yao, Q., et al. (2017). Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials, 115, 115–127. https://doi.org/10.1016/j.biomaterials.2016.11.018

    Article  CAS  PubMed  Google Scholar 

  136. Gomes, S. R., et al. (2015). In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Materials Science and Engineering C, 46, 348–358. https://doi.org/10.1016/j.msec.2014.10.051

    Article  CAS  PubMed  Google Scholar 

  137. E. Baykan, A. Koc, A. Eser Elcin, and Y. Murat Elcin, “ Evaluation of a biomimetic poly( ε -caprolactone)/ β -tricalcium phosphate multispiral scaffold for bone tissue engineering: In vitro and in vivo studies ,” Biointerphases, vol. 9, no. 2, p. 029011, 2014, doi: https://doi.org/10.1116/1.4870781.

  138. Kim, B. R., Nguyen, T. B. L., Min, Y. K., & Lee, B. T. (2014). In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds. Tissue Eng. - Part A, 20(23–24), 3279–3289. https://doi.org/10.1089/ten.tea.2014.0081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Son, S. R., Linh, N. T. B., Yang, H. M., & Lee, B. T. (2013). In vitro and in vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration. Science and Technology of Advanced Materials. https://doi.org/10.1088/1468-6996/14/1/015009

    Article  PubMed  PubMed Central  Google Scholar 

  140. Fu, S. Z., et al. (2012). In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold. Biomaterials, 33(33), 8363–8371. https://doi.org/10.1016/j.biomaterials.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  141. Ji, W., et al. (2013). Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials, 34(3), 735–745. https://doi.org/10.1016/j.biomaterials.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  142. J. H. Jo et al., “In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(ε-caprolactone) composite materials,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 91, no. 1, pp. 213–220, 2009, doi: https://doi.org/10.1002/jbm.b.31392.

  143. Michael Shin, H. (2004). In Vivo Bone Tissue Engineering Using Mesenchymal Stem Cells on a Novel Electrospun Nanofibrous Scaffold. Tissue Engineering. https://doi.org/10.1089/107632704322791673

    Article  PubMed  Google Scholar 

  144. Han, F., Zhang, P., Sun, Y., Lin, C., Zhao, P., & Chen, J. (2015). Hydroxyapatite-doped polycaprolactone nanofiber membrane improves tendon–bone interface healing for anterior cruciate ligament reconstruction. International Journal of Nanomedicine, 10, 7333–7343. https://doi.org/10.2147/IJN.S92099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Samadian, H., et al. (2020). A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration. Sci. Rep., 10(1), 1–12. https://doi.org/10.1038/s41598-020-70155-2

    Article  CAS  Google Scholar 

  146. Lam, C. X. F., Hutmacher, D. W., Schantz, J. T., Woodruff, M. A., & Teoh, S. H. (2009). Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Journal of Biomedical Materials Research. Part A, 90(3), 906–919. https://doi.org/10.1002/jbm.a.32052

    Article  CAS  PubMed  Google Scholar 

  147. Harikrishnan, P., Islam, H., & Sivasamy, A. (2019). Biocompatibility studies of nanoengineered polycaprolactone and nanohydroxyapatite scaffold for craniomaxillofacial bone regeneration. The Journal of Craniofacial Surgery, 30(1), 265–269. https://doi.org/10.1097/SCS.0000000000004857

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Siddiqui.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, N., Kishori, B., Rao, S. et al. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Mol Biotechnol 63, 363–388 (2021). https://doi.org/10.1007/s12033-021-00311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00311-0

Keywords

Navigation