Skip to main content

Advertisement

Log in

Biocompatibility of a New Kind of Polyvinyl Alcohol Embolic Microspheres: In Vitro and In Vivo Evaluation

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the biocompatibility of polyvinyl alcohol (PVA) embolic microspheres by in vivo and in vitro evaluations. Two specifications of PVA microspheres including colorless microspheres (1 g microspheres with 7 mL 0.9% sodium chloride (SC) per vial, size: 500–700 µm) and blue microspheres (2 g microspheres with 7 mL 0.9% SC per vial, size: 500–700 µm) were assessed for biocompatibility. The vitro cytotoxicity was evaluated in L929 cells by MTT assay. Acute systemic toxicity and 28-repeat dose intravenous subchronic toxicity were assessed in 20 ICR mice and 40 SD rates, respectively. Skin sensitization was conducted in 30 adult albino guinea pigs by maximization test, in addition, intracutaneous reaction test was performed in New Zealand white rabbits. Hemolysis ratio of PVA microspheres was evaluated with rabbit blood. Moreover, test for genotoxicity was assessed by bacterial reverse mutation test and mouse lymphoma mutagenesis assay. No cytotoxicity, hemolysis, or acute toxicity of PVA microspheres was found, and slight fluctuations of biochemical indexes were observed in test of 28-day repeat dose intravenous subchronic toxicity, while these changes remained within our historical permitted range. Maximization test and intracutaneous reactivity test disclosed no irritation to skin or tissues. According to bacterial reverse mutation test and mouse lymphoma mutagenesis assay, no genotoxicity of PVA microspheres was observed. PVA microspheres showed excellent biocompatibility both in vivo and in vitro, and they were promising embolic materials for drug-eluting beads transarterial chemoembolization (DEB-TACE) therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luo, S. H., Song, S. L., Zheng, C. S., Li, W. Y., Wang, Y., Xia, X. W., & Feng, G. S. (2017). Embolic effects of Bletilla striata microspheres in renal artery and transplanted VX2 liver tumor model in rabbits. Chinese Journal of Integrative Medicine. https://doi.org/10.1007/s11655-017-2953-3

    Article  PubMed  Google Scholar 

  2. Jang, J. H., Lee, J. W., Hong, J. T., & Jin, Y. J. (2015). Transarterial chemoembolization for hepatocellular carcinoma: An evidence-based review of its place in therapy. Journal of Hepatocellular Carcinoma, 2, 123–129.

    PubMed  PubMed Central  Google Scholar 

  3. Lencioni, R., de Baere, T., Burrel, M., Caridi, J. G., Lammer, J., Malagari, K., Martin, R. C., O’Grady, E., Real, M. I., Vogl, T. J., Watkinson, A., & Geschwind, J. F. (2012). Transcatheter treatment of hepatocellular carcinoma with Doxorubicin-loaded DC Bead (DEBDOX): Technical recommendations. CardioVascular and Interventional Radiology, 35(5), 980–985.

    Article  PubMed  Google Scholar 

  4. Fuchs, K., Duran, R., Denys, A., Bize, P. E., Borchard, G., & Jordan, O. (2017). Drug-eluting embolic microspheres for local drug delivery—state of the art. Journal of Controlled Release, 262, 127–138.

    Article  CAS  PubMed  Google Scholar 

  5. Zou, J. H., Zhang, L., Ren, Z. G., & Ye, S. L. (2016). Efficacy and safety of cTACE versus DEB-TACE in patients with hepatocellular carcinoma: A meta-analysis. Journal of Digestive Diseases, 17(8), 510–517.

    Article  CAS  PubMed  Google Scholar 

  6. Malagari, K., Alexopoulou, E., Chatzimichail, K., Hall, B., Koskinas, J., Ryan, S., Gallardo, E., Kelekis, A., Gouliamos, A., & Kelekis, D. (2008). Transcatheter chemoembolization in the treatment of HCC in patients not eligible for curative treatments: Midterm results of doxorubicin-loaded DC bead. Abdominal Imaging, 33(5), 512–519.

    Article  PubMed  Google Scholar 

  7. Lewis, A. L., Gonzalez, M. V., Lloyd, A. W., Hall, B., Tang, Y., Willis, S. L., Leppard, S. W., Wolfenden, L. C., Palmer, R. R., & Stratford, P. W. (2006). DC bead: In vitro characterization of a drug-delivery device for transarterial chemoembolization. Journal of Vascular & Interventional Radiology, 17(2 Pt 1), 335–342.

    Article  Google Scholar 

  8. Choi, S. Y., Kwak, B. K., Shim, H. J., Lee, J., Hong, S. U., & Kim, K. A. (2015). MRI traceability of superparamagnetic iron oxide nanoparticle-embedded chitosan microspheres as an embolic material in rabbit uterus. Diagnostic and Interventional Radiology, 21(1), 47–53.

    Article  PubMed  Google Scholar 

  9. Yamamoto, A., Imai, S., Kobatake, M., Yamashita, T., Tamada, T., & Umetani, K. (2006). Evaluation of tris-acryl gelatin microsphere embolization with monochromatic X Rays: Comparison with polyvinyl alcohol particles. Journal of Vascular & Interventional Radiology, 17(11 Pt 1), 1797–1802.

    Article  Google Scholar 

  10. Grumezescu, V., Holban, A. M., Grumezescu, A. M., Socol, G., Ficai, A., Vasile, B. S., Trusca, R., Bleotu, C., Lazar, V., Chifiriuc, C. M., & Mogosanu, G. D. (2014). Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication, 6(3), 035002.

    Article  CAS  PubMed  Google Scholar 

  11. Puoci, F., Cirillo, G., Curcio, M., Parisi, O. I., Iemma, F., & Picci, N. (2011). Molecularly imprinted polymers in drug delivery: State of art and future perspectives. Expert Opinion on Drug Delivery, 8(10), 1379–1393.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, D. W., Hsu, Y. H., Liao, J. Y., Liu, S. J., Chen, J. K., & Ueng, S. W. (2012). Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. International Journal of Pharmaceutics, 430(1–2), 335–341.

    Article  CAS  PubMed  Google Scholar 

  13. Mo, L., Hou, L., Guo, D., Xiao, X., Mao, P., & Yang, X. (2012). Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells. International Journal of Pharmaceutics, 436(1–2), 815–824.

    Article  CAS  PubMed  Google Scholar 

  14. Siskin, G. P., Dowling, K., Virmani, R., Jones, R., & Todd, D. (2003). Pathologic evaluation of a spherical polyvinyl alcohol embolic agent in a porcine renal model. Journal of Vascular & Interventional Radiology, 14(1), 89–98.

    Article  Google Scholar 

  15. Pelage, J. P., Laurent, A., Wassef, M., Bonneau, M., Germain, D., Rymer, R., Flaud, P., Martal, J., & Merland, J. J. (2002). Uterine artery embolization in sheep: Comparison of acute effects with polyvinyl alcohol particles and calibrated microspheres. Radiology, 224(2), 436–445.

    Article  PubMed  Google Scholar 

  16. Rong, J. J., Liang, M., Xuan, F. Q., Sun, J. Y., Zhao, L. J., Zhen, H. Z., Tian, X. X., Liu, D., Zhang, Q. Y., Peng, C. F., Yao, T. M., Li, F., Wang, X. Z., Han, Y. L., & Yu, W. T. (2015). Alginate-calcium microsphere loaded with thrombin: A new composite biomaterial for hemostatic embolization. International Journal of Biological Macromolecules, 75, 479–488.

    Article  CAS  PubMed  Google Scholar 

  17. Weng, L., Rostamzadeh, P., Nooryshokry, N., Le, H. C., & Golzarian, J. (2013). In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomaterialia, 9(6), 6823–6833.

    Article  CAS  PubMed  Google Scholar 

  18. Rong, J. J., Liang, M., Xuan, F. Q., Sun, J. Y., Zhao, L. J., Zheng, H. Z., Tian, X. X., Liu, D., Zhang, Q. Y., Peng, C. F., Li, F., Wang, X. Z., Han, Y. L., & Yu, W. T. (2017). Thrombin-loaded alginate-calcium microspheres: A novel hemostatic embolic material for transcatheter arterial embolization. International Journal of Biological Macromolecules, 104(Pt A), 1302–1312.

    Article  CAS  PubMed  Google Scholar 

  19. Zielhuis, S. W., Nijsen, J. F., Seppenwoolde, J. H., Bakker, C. J., Krijger, G. C., Dullens, H. F., Zonnenberg, B. A., van Rijk, P. P., Hennink, W. E., & van het Schip, A. D. (2007). Long-term toxicity of holmium-loaded poly(L-lactic acid) microspheres in rats. Biomaterials, 28(31), 4591–4599.

    Article  CAS  PubMed  Google Scholar 

  20. Xuan, F., Rong, J., Liang, M., Zhang, X., Sun, J., Zhao, L., Li, Y., Liu, D., Li, F., Wang, X., & Han, Y. (2017). Biocompatibility and effectiveness evaluation of a new hemostatic embolization agent: Thrombin loaded alginate calcium microsphere. BioMed Research International. https://doi.org/10.1155/2017/1875258.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cui, D. C., Lu, W. L., Sa, E. A., Gu, M. J., Lu, X. J., & Fan, T. Y. (2012). Poly(acrylic acid) microspheres loaded with lidocaine: Preparation and characterization for arterial embolization. International Journal of Pharmaceutics, 436(1–2), 527–535.

    Article  CAS  PubMed  Google Scholar 

  22. Hasan, M. S., Kehoe, S., & Boyd, D. (2014). Temporal analysis of dissolution by-products and genotoxic potential of spherical zinc-silicate bioglass: “Imageable beads” for transarterial embolization. Journal of Biomaterials Applications, 29(4), 566–581.

    Article  CAS  PubMed  Google Scholar 

  23. Kamarudin, N. H., Rahman, R. N., Ali, M. S., Leow, T. C., Basri, M., & Salleh, A. B. (2014). Unscrambling the effect of C-terminal tail deletion on the stability of a cold-adapted, organic solvent stable lipase from Staphylococcus epidermidis AT2. Molecular Biotechnology, 56(8), 747–757.

    Article  CAS  PubMed  Google Scholar 

  24. Nishida, N., Ozato, N., Matsui, K., Kuroda, K., & Ueda, M. (2013). ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae. Journal of Biotechnology, 165(2), 145–152.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyi Sha.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Dai, H., Guo, P. et al. Biocompatibility of a New Kind of Polyvinyl Alcohol Embolic Microspheres: In Vitro and In Vivo Evaluation. Mol Biotechnol 61, 610–621 (2019). https://doi.org/10.1007/s12033-019-00166-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00166-6

Keywords

Navigation