Skip to main content
Log in

Purification and Biochemical Characterization of Phytase Enzyme from Lactobacillus coryniformis (MH121153)

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Phytase (myo-inositol hexaphosphate phosphohydrolase) belongs to phosphatases. It catalyzes the hydrolysis of phytate to less-phosphorylated inorganic phosphates and phytate. Phytase is used primarily for the feeding of simple hermit animals in order to increase the usability of amino acids, minerals, phosphorus and energy. In the present study, phytase isolation from the Lactobacillus coryniformis strain, isolated from Lor cheese sources, phytase purification and characterization were studied. The phytase was purified in simple three steps. The enzyme was obtained with 2.60% recovery and a specific activity of 202.25 (EU/mg protein). The molecular mass of the enzyme was determined to be 43.25 kDa with the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. The optimum temperature and pH for the enzyme were found as 60 °C and 5.0 and respectively. To defined the substrate specificity of the phytase, the hydrolysis of several phosphorylated compounds by the purified enzyme was studied and sodium phytate showed high specificity. Furthermore, the effects of Ca2+, Ag+, Mg2+, Cu2+, Co2+, Pb2+, Zn2+ and Ni2+ metal ions on the enzyme were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Filannino, P., Di Cagno, R., & Gobbetti, M. (2018). Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Current Opinion in Biotechnology, 49, 64–72.

    Article  CAS  PubMed  Google Scholar 

  2. Papadimitriou, K., Alegría, Á, Bron, P. A., et al. (2016). Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews, 80(3), 837–890.

    Article  CAS  PubMed  Google Scholar 

  3. Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37, 634–663.

    Article  CAS  PubMed  Google Scholar 

  4. De Angelis, M., Gallo, G., Corbo, M. R., McSweeney, P. L., Faccia, M., Giovine, M., et al. (2003). Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. International Journal of Food Microbiology, 87, 259–270.

    Article  CAS  PubMed  Google Scholar 

  5. Urbano, G., Lopez-Jurado, M., Aranda, P., Vidal-Valverde, C., Tenorio, E., & Porres, J. (2000). The role of phytic acid in legumes: Antinutrient or beneficial function? Journal of Physiology and Biochemistry, 56, 283–294.

    Article  CAS  PubMed  Google Scholar 

  6. Diouf-Lewis, A., Commereuc, S., & Verney, V. (2017). Toward greener polyolefins: Antioxidant effect of phytic acid from cereal waste. European Polymer Journal, 96, 190–199.

    Article  CAS  Google Scholar 

  7. Gülçin, I., & Beydemir, Ş (2013). Phenolic compounds as antioxidants: Carbonic anhydrase isoenzymes inhibitors. Mini-Reviews in Medicinal Chemistry, 13(3), 408–430.

    PubMed  Google Scholar 

  8. Gülçin, I. (2012). Antioxidant activity of food constituents: An overview. Archives of Toxicology, 86(3), 345–391.

    Article  CAS  PubMed  Google Scholar 

  9. Singh, B., & Satyanarayana, T. (2009). Characterization of a HAP—phytase from a thermophilic mould Sporotrichum thermophile. Bioresource Technology, 100, 2046–2051.

    Article  CAS  PubMed  Google Scholar 

  10. Bohn, L., Meyer, A. S., & Rasmussen, S. K. (2008). Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University Science B, 9(3), 165–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalsi, H. K., Singh, R., Dhaliwal, H. S., & Kumar, V. (2016). Phytases from Enterobacter and Serratia species with desirable characteristics for food and feed applications. Biotechnology, 6, 1–13.

    Google Scholar 

  12. Demir, Y., Şenol Kotan, M., Dikbas, N., & Beydemir, S. (2017). Phytase from Weissella halotolerans: Purification, partial characterisation and the effect of some metals. International Journal of Food Properties, 20(2), 2127–2137.

    CAS  Google Scholar 

  13. Bischoff, K. M., Rooney, A. P., Li, X. L., Liu, S., & Hughes, R. (2006). Purification and characterization of a family 5 Endoglucanase from a moderately thermophilic strain of Bacillus Licheniformis. Biotechnology Letters, 28, 1761–1765.

    Article  CAS  PubMed  Google Scholar 

  14. Adiguzel, A., Ozkan, H., Baris, O., Inan, K., Gulluce, M., & Sahin, F. (2009). Identification and characterization of thermophilic bacteria Isolated from Hot Springs in Turkey. Journal of Microbiological Methods, 79, 321–328.

    Article  CAS  PubMed  Google Scholar 

  15. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  16. Beydemir, S., & Demir, Y. (2016). Antiepileptic drugs: Impacts on human serum paraoxonase-1. Journal of Biochemical and Molecular Toxicology, 31(6), e21889.

    Article  CAS  Google Scholar 

  17. Alım, Z., & Beydemir, S. (2016). Some anticancer agents act on human serum Paraoxonase-1 to reduce its activity. Chemical Biology and Drug Design, 88(2), 188–196.

    Article  CAS  PubMed  Google Scholar 

  18. Zou, L. K., Wang, H. N., Pan, X., Tian, G. B., Xie, Z. W., Wu, Q., et al. (2008). Expression, purification and characterization of a phyAm – phyCs fusion phytase. Journal of Zhejiang University Science B, 9, 536–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  21. Demir, Y., & Beydemir, S. (2015). Purification, refolding, and characterization of recombinant human paraoxonase-1. Turkish Journal of Chemistry, 39, 764–776.

    Article  CAS  Google Scholar 

  22. Sarıbuga, E., Nadaroglu, H., Dikbas, N., Senol, M., & Cetin, B. (2014). Purification, characterization of phytase enzyme from Lactobacillus Plantarum bacteria and determination of its kinetic properties. African Journal of Biotechnology, 13(23), 2373–2378.

    Article  CAS  Google Scholar 

  23. Gülçin, I., Küfrevioğlu, O. I., & Oktay, M. (2005). Purification and characterization of polyphenol oxidase from nettle (Urtica dioica L.) and inhibitory effects of some chemicals on enzyme activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 20(3), 297–302.

    Article  CAS  Google Scholar 

  24. Oh, B. C., Choi, W. C., Park, S., Kim, Y. O., & Oh, T. K. (2004). Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, 63(4), 362–372.

    Article  CAS  PubMed  Google Scholar 

  25. Vohra, A., & Satyanarayana, T. (2003). Phytases: Microbial sources, production, purification, and potential biotechnological applications. Critical Reviews in Biotechnology, 23(1), 29–60.

    Article  CAS  PubMed  Google Scholar 

  26. Boukhris, I., Farhat-Khemakhem, A., Blibech, M., Bouchaala, K., & Chouayekh, H. (2015). Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573. International Journal of Biological Macromolecules, 80, 581–587.

    Article  CAS  PubMed  Google Scholar 

  27. Escobin-Mopera, L., Ohtani, M., Sekiguchi, S., Sone, T., Abe, A., Tanaka, M., et al. (2012). Purification and characterization of phytase from Klebsiella pneumoniae 9-3B. Journal of Bioscience and Bioengineering, 113(5), 562–567.

    Article  CAS  PubMed  Google Scholar 

  28. Parhamfar, M., Badoei-Dalfard, A., Khaleghi, M., & Hassanshahian, M. (2015). Purification and characterization of an acidic, thermophilic phytase from a newly isolated Geobacillus stearothermophilus strain DM12. Program in Biological Sciences, 5(1), 61–73.

    Google Scholar 

  29. Choi, Y. M., Suh, H. J., & Kim, J. M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. Journal of Protein Chemistry, 20(4), 287–292.

    Article  CAS  PubMed  Google Scholar 

  30. Konietzny, U., & Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science & Technology, 37, 791–812.

    Article  CAS  Google Scholar 

  31. Herter, T., Berezina, O. V., Zinin, N. V., Velikodvorskaya, G. A., Greiner, R., & Borriss, R. (2006). Glucose-1-phosphatase (AgpE) from Enterobacter cloacae displays enhanced phytase activity. Applied Microbiology and Biotechnology, 70, 60–64.

    Article  CAS  PubMed  Google Scholar 

  32. Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., et al. (1999). Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): Catalytic properties. Applied and Environmental Microbiology, 65, 367–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Roy, M. P., Poddar, M., Singh, K. K., & Ghosh, S. (2012). Purification, characterization and properties of phytase from Shigella sp. CD2. Indian Journal of Biochemistry & Biophysics, 49(4), 266–271.

    CAS  Google Scholar 

  34. Fu, S., Sun, J., Qian, L., & Li, Z. (2008). Bacillus phytases: Present scenario and future perspectives. Applied Biochemistry and Biotechnology, 151, 1–8.

    Article  CAS  PubMed  Google Scholar 

  35. Boyce, A., & Walsh, G. (2007). Purification and characterisation of an acid phosphatase with phytase activity from Mucor hiemalis Wehmer. Journal of Biotechnology, 132(1), 82–87.

    Article  CAS  PubMed  Google Scholar 

  36. Fujita, J., Yamane, Y. I., Fukuda, H., Kizaki, Y., Wakabayashi, S., Shigeta, S., et al. (2003). Production and properties of phytase and acid phosphatase from a sake koji mold, Aspergillus oryzae. Journal of Bioscience and Bioengineering, 95(4), 348–353.

    Article  CAS  PubMed  Google Scholar 

  37. Greiner, R., & Konietzny, U. (2006). Phytase for food application. Food Technology and Biotechnology, 44(2), 125–140.

    CAS  Google Scholar 

  38. Quan, C. S., Tian, W. J., Fan, S. D., & Kikuchi, J. I. (2004). Purification and properties of a low- molecular-weight phytase from Cladosporium sp. FP-1. Journal of Bioscience and Bioengineering, 97(4), 260–266.

    Article  CAS  PubMed  Google Scholar 

  39. In, M. J., Seo, S. W., Kim, D. C., & Oh, N. S. (2009). Purification and biochemical properties of an extracellular acid phytase produced by the Saccharomyces cerevisiae CY strain. Process Biochemistry, 44(1), 122–126.

    Article  CAS  Google Scholar 

  40. Haros, M., Bielecka, M., Honke, J., & Sanz, Y. (2008). Phytate-degrading activity in lactic acid bacteria. Polish Journal of Food and Nutrition Sciences, 58, 33–40.

    CAS  Google Scholar 

  41. Kücük, M., & Gulcin, I. (2016). Purification and characterization of the carbonic anhydrase enzyme from black sea trout (Salmo trutta Labrax Coruhensis) kidney and inhibition effects of some metal ions on enzyme activity. Environmental Toxicology and Pharmacology, 44, 134–139.

    Article  CAS  PubMed  Google Scholar 

  42. Kocyigit, U. M., Taslimi, P., & Gulçin, İ (2018). Characterization and inhibition effects of some metal ions on carbonic anhydrase enzyme from Kangal Akkaraman sheep. Journal of Biochemical and Molecular Toxicology. https://doi.org/10.1002/jbt.22172.

    Article  PubMed  Google Scholar 

  43. Bajaj, B. K., & Manhas, K. (2012). Production and characterization of xylanase from Bacillus Licheniformis P11(C) with potential for fruit juice and bakery industry. Biocatalysis and Agricultural Biotechnology, 1(4), 330–337.

    Article  CAS  Google Scholar 

  44. Yu, P., & Chen, Y. (2013). Purification and characterization of a novel neutral and heat-tolerant phytase from a newly isolated strain Bacillus nealsonii ZJ0702. BMC Biotechnology, 13(78), 1–7.

    Google Scholar 

  45. Bajaj, B. K., & Wani, A. M. (2015). Purification and characterization of a novel phytase from Nocardia sp. MB 36. Biocatalysis and Biotransformation, 33(3), 141–149.

    Article  CAS  Google Scholar 

  46. Hong, S. W., Chu, I. H., & Chung, K. S. (2011). Purification and biochemical characterization of thermostable phytase from newly isolated Bacillus subtilis CF92. Journal of the Korean Society for Applied Biological Chemistry, 54, 89–94.

    Article  CAS  Google Scholar 

  47. Gulati, H. K., Chadha, B. S., & Saini, H. S. (2007). Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. Journal of Industrial Microbiology and Biotechnology, 34, 91–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeliz Demir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, Y., Dikbaş, N. & Beydemir, Ş. Purification and Biochemical Characterization of Phytase Enzyme from Lactobacillus coryniformis (MH121153). Mol Biotechnol 60, 783–790 (2018). https://doi.org/10.1007/s12033-018-0116-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0116-1

Keywords

Navigation