Skip to main content
Log in

Molecular Approaches for Manipulating Male Sterility and Strategies for Fertility Restoration in Plants

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Usable pollination control systems have proven to be effective system for the development of hybrid crop varieties, which are important for optimal performance over varied environments and years. They also act as a biocontainment to check horizontal transgene flow. In the last two decades, many genetic manipulations involving genes controlling the production of cytotoxic products, conditional male sterility, altering metabolic processes, post-transcriptional gene silencing, RNA editing and chloroplast engineering methods have been used to develop a proper pollination control system. In this review article, we outline the approaches used for generating male sterile plants using an effective pollination control system to highlight the recent progress that occurred in this area. Furthermore, we propose possible future directions for biotechnological improvements that will allow the farmers to buy hybrid seed once for many generations in a cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FAO, U. (2009). How to feed the world in 2050. In Rome: Highlevel expert forum.

  2. Pinstrup-Andersen, P., & Cohen, M. (2000). Modern biotechnology for food and agriculture: Risks and opportunities for the poor. In G. J. Persley, & M. M. Lantin (Eds.), Agricultural biotechnology and the poor (pp. 159–172). Washington DC: Consultative Group on International Agricultural Research.

    Google Scholar 

  3. Sharma, H., Crouch, J., Sharma, K., Seetharama, N., & Hash, C. (2002). Applications of biotechnology for crop improvement: Prospects and constraints. Plant Science, 163, 381–395.

    Article  CAS  Google Scholar 

  4. Myers, N. (1999). The next green revolution: Its environmental underpinnings. Current Science, 76, 507–513.

    Google Scholar 

  5. Miller, J. K., Herman, E. M., Jahn, M., & Bradford, K. J. (2010). Strategic research, education and policy goals for seed science and crop improvement. Plant Science, 179, 645–652.

    Article  CAS  Google Scholar 

  6. Kempe, K., & Gils, M. (2011). Pollination control technologies for hybrid breeding. Molecular Breeding, 27, 417–437.

    Article  Google Scholar 

  7. Acquaah, G. (2009). Principles of plant genetics and breeding. New York: Wiley.

    Google Scholar 

  8. Kaul, M. (1987). Male sterility in higher plants (vol. 1005, pp. 116–117). Berlin: Springer.

  9. Budar, F., & Pelletier, G. (2001). Male sterility in plants: Occurrence, determinism, significance and use. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie, 324, 543–550.

    Article  CAS  Google Scholar 

  10. Chaudhury, A. M. (1993). Nuclear genes controlling male fertility. The Plant Cell, 5, 1277.

    Article  Google Scholar 

  11. Horner, H. T., & Palmer, R. G. (1995). Mechanisms of genic male sterility. Crop Science, 35, 1527–1535.

    Article  Google Scholar 

  12. Hanson, M. R. (1991). Plant mitochondrial mutations and male sterility. Annual Review of Genetics, 25, 461–486.

    Article  CAS  Google Scholar 

  13. Budar, F., Touzet, P., & Pelletier, G. (2008). 7 Cytoplasmic male sterility. Annual Plant Reviews, Flowering and Its Manipulation, 20, 147.

    Google Scholar 

  14. Mackenzie, S., & McIntosh, L. (1999). Higher plant mitochondria. The Plant Cell, 11, 571–585.

    Article  CAS  Google Scholar 

  15. Wise, R., Gobelman-Werner, K., Pei, D., Dill, C., & Schnable, P. (1999). Mitochondrial transcript processing and restoration of male fertility in T-cytoplasm maize. Journal of Heredity, 90, 380–385.

    Article  CAS  Google Scholar 

  16. Bentolila, S., Alfonso, A. A., & Hanson, M. R. (2002). A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proceedings of the National Academy of Sciences, 99, 10887–10892.

    Article  CAS  Google Scholar 

  17. Mariani, C., De Beuckeleer, M., Truettner, J., Leemans, J., & Goldberg, R. B. (1990). Induction of male sterility in plants by a chimeric ribonuclease gene. Nature, 347, 737–741.

    Article  CAS  Google Scholar 

  18. Mariani, C., Gossele, V., Beuckeleer, M. D., Block, M. D., Goldberg, R. B., Greef, W. D., & Leemans, J. (1992). A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature, 357, 384–387.

    Article  CAS  Google Scholar 

  19. Huang, J., Smith, A. R., Zhang, T., & Zhao, D. (2016). Creating completely both male and female sterile plants by specifically ablating microspore and megaspore mother cells. Frontiers in Plant Science, 7, 30.

    Google Scholar 

  20. Kumar, K. R. R., & Kirti, P. B. (2011). Differential gene expression in Arachis diogoi upon interaction with peanut late leaf spot pathogen, Phaeoisariopsis personata and characterization of a pathogen induced cyclophilin. Plant Molecular Biology, 75, 497–513.

    Article  CAS  Google Scholar 

  21. Pande, S., Rao, J. N., & Dwivedi, S. (2002). Components of resistance to late leaf spot caused by Phaeoisariopsis personata in inter-specific derivatives of groundnut. Indian Phytopathology, 55, 444–450.

    Google Scholar 

  22. Shukla, P., Singh, N. K., Kumar, D., Vijayan, S., et al. (2014). Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco. Functional & Integrative Genomics, 14, 307–317.

    Article  CAS  Google Scholar 

  23. Shukla, P., Subhashini, M., Singh, N. K., Ahmed, I., et al. (2016). Targeted expression of cystatin restores fertility in cysteine protease induced male sterile tobacco plants. Plant Science: An International Journal of Experimental Plant Biology, 246, 52–61.

    Article  CAS  Google Scholar 

  24. Engelke, T., Hirsche, J., & Roitsch, T. (2010). Anther-specific carbohydrate supply and restoration of metabolically engineered male sterility. Journal of Experimental Botany, 61, 2693–2706.

    Article  CAS  Google Scholar 

  25. Hirsche, J., Engelke, T., Völler, D., Götz, M., & Roitsch, T. (2009). Interspecies compatibility of the anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating male sterile plants. Theoretical and Applied Genetics, 118, 235–245.

    Article  CAS  Google Scholar 

  26. Becker, T. W., Caboche, M., Carrayol, E., & Hirel, B. (1992). Nucleotide sequence of a tobacco cDNA encoding plastidic glutamine synthetase and light inducibility, organ specificity and diurnal rhythmicity in the expression of the corresponding genes of tobacco and tomato. Plant Molecular Biology, 19, 367–379.

    Article  CAS  Google Scholar 

  27. Cren, M., & Hirel, B. (1999). Glutamine synthetase in higher plants regulation of gene and protein expression from the organ to the cell. Plant and Cell Physiology, 40, 1187–1193.

    Article  CAS  Google Scholar 

  28. Dubois, F., Brugière, N., Sangwan, R. S., & Hirel, B. (1996). Localization of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts shows organ-and cell-specific patterns of protein synthesis and gene expression. Plant Molecular Biology, 31, 803–817.

    Article  CAS  Google Scholar 

  29. Ribarits, A., Mamun, A. N., Li, S., Resch, T., et al. (2007). Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. Plant Biotechnology Journal, 5, 483–494.

    Article  CAS  Google Scholar 

  30. Worrall, D., Hird, D. L., Hodge, R., Paul, W., et al. (1992). Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. The Plant Cell, 4, 759–771.

    Article  CAS  Google Scholar 

  31. Chang, Z., Chen, Z., Wang, N., Xie, G., Lu, J., Yan, W., et al. (2016). Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proceedings of the National Academy of Sciences, 113, 14145–14150.

    Article  CAS  Google Scholar 

  32. Cigan, A. M., Singh, M., Benn, G., Feigenbutz, L., Kumar, M., Cho, M. J., et al. (2017). Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnology Journal, 15, 379–389.

    Article  CAS  Google Scholar 

  33. Hawkes, T., Pline-Srnic, W., Dale, R., Friend, E., et al. (2011). d-glufosinate as a male sterility agent for hybrid seed production. Plant Biotechnology Journal, 9, 301–314.

    Article  CAS  Google Scholar 

  34. Singh, S. P., Pandey, T., Srivastava, R., Verma, P. C., et al. (2010). BECLIN1 from Arabidopsis thaliana under the generic control of regulated expression systems, a strategy for developing male sterile plants. Plant Biotechnology Journal, 8, 1005–1022.

    Article  CAS  Google Scholar 

  35. Singh, S. P., Singh, S. P., Pandey, T., Singh, R. R., & Sawant, S. V. (2015). A novel male sterility–fertility restoration system in plants for hybrid seed production. Scientific Reports, 5, 11274.

    Article  CAS  Google Scholar 

  36. Guerineau, F., Sorensen, A. M., Fenby, N., & Scott, R. (2003). Temperature sensitive diphtheria toxin confers conditional male-sterility in Arabidopsis thaliana. Plant Biotechnology Journal, 1, 33–42.

    Article  CAS  Google Scholar 

  37. Kriete, G., Niehaus, K., Perlick, A., Pühler, A., & Broer, I. (1996). Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound N-acetyl-l-phosphinothricin. The Plant Journal, 9, 809–818.

    Article  CAS  Google Scholar 

  38. Rao, G. S., Tyagi, A. K., & Rao, K. V. (2017). Development of an inducible male-sterility system in rice through pollen-specific expression of l-ornithinase (argE) gene of E. coli. Plant Science: An International Journal of Experimental Plant Biology, 256, 139–147.

    Article  CAS  Google Scholar 

  39. Denli, A. M., & Hannon, G. J. (2003). RNAi: An ever-growing puzzle. Trends in Biochemical Sciences, 28, 196–201.

    Article  CAS  Google Scholar 

  40. Mansoor, S., Amin, I., Hussain, M., Zafar, Y., & Briddon, R. W. (2006). Engineering novel traits in plants through RNA interference. Trends in Plant Science, 11, 559–565.

    Article  CAS  Google Scholar 

  41. Souza, A. J. D., Mendes, B. M. J., & Mourão Filho, F. D. A. A. (2007). Gene silencing: Concepts, applications, and perspectives in woody plants. Scientia Agricola, 64, 645–656.

    Article  Google Scholar 

  42. Wasternack, C., & Parthier, B. (1997). Jasmonate-signalled plant gene expression. Trends in Plant Science, 2, 302–307.

    Article  Google Scholar 

  43. Creelman, R. A., & Mullet, J. E. (1997). Biosynthesis and action of jasmonates in plants. Annual Review of Plant Biology, 48, 355–381.

    Article  CAS  Google Scholar 

  44. Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., & Okada, K. (2001). The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. The Plant Cell, 13, 2191–2209.

    Article  CAS  Google Scholar 

  45. Sanders, P. M., Lee, P. Y., Biesgen, C., Boone, J. D., et al. (2000). The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. The Plant Cell, 12, 1041–1061.

    Article  CAS  Google Scholar 

  46. McConn, M. (1996). The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. The Plant Cell, 8, 403–416.

    Article  CAS  Google Scholar 

  47. Bae, H. K., Kang, H. G., Kim, G. J., Eu, H. J., et al. (2010). Transgenic rice plants carrying RNA interference constructs of AOS (allene oxide synthase) genes show severe male sterility. Plant Breeding, 129, 647–651.

    Article  CAS  Google Scholar 

  48. Woo, M. O., Ham, T. H., Ji, H. S., Choi, M. S., et al. (2008). Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). The Plant Journal, 54, 190–204.

    Article  CAS  Google Scholar 

  49. Nawaz-ul-Rehman, M. S., Mansoor, S., Khan, A. A., Zafar, Y., & Briddon, R. W. (2007). RNAi-mediated male sterility of tobacco by silencing TA29. Molecular Biotechnology, 36, 159–165.

    Article  CAS  Google Scholar 

  50. Yui, R., Iketani, S., Mikami, T., & Kubo, T. (2003). Antisense inhibition of mitochondrial pyruvate dehydrogenase E1α subunit in anther tapetum causes male sterility. The Plant Journal, 34, 57–66.

    Article  CAS  Google Scholar 

  51. Heiser, V., Rasmusson, A. G., Thieck, O., Brennicke, A., & Grohmann, L. (1997). Antisense repression of the mitochondrial NADH-binding subunit of complex I in transgenic potato plants affects male fertility. Plant Science, 127, 61–69.

    Article  CAS  Google Scholar 

  52. Xu, H., Knox, R. B., Taylor, P. E., & Singh, M. B. (1995). Bcp1, a gene required for male fertility in Arabidopsis. Proceedings of the National Academy of Sciences, 92, 2106–2110.

    Article  CAS  Google Scholar 

  53. Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196, 67–76.

    Article  CAS  Google Scholar 

  54. Agati, G., Matteini, P., Goti, A., & Tattini, M. (2007). Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytologist, 174, 77–89.

    Article  CAS  Google Scholar 

  55. Brunetti, C., Di Ferdinando, M., Fini, A., Pollastri, S., & Tattini, M. (2013). Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. International Journal of Molecular Sciences, 14, 3540–3555.

    Article  CAS  Google Scholar 

  56. Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., & Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6, 709–711.

    Article  CAS  Google Scholar 

  57. Fischer, R., Budde, I., & Hain, R. (1997). Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. The Plant Journal, 11, 489–498.

    Article  CAS  Google Scholar 

  58. Höfig, K. P., Möller, R., Donaldson, L., Putterill, J., & Walter, C. (2006). Towards male sterility in Pinus radiata—a stilbene synthase approach to genetically engineer nuclear male sterility. Plant Biotechnology Journal, 4, 333–343.

    Article  Google Scholar 

  59. Van Der Meer, I. M., Stam, M. E., van Tunen, A. J., Mol, J., & Stuitje, A. R. (1992). Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. The Plant Cell, 4, 253–262.

    Article  Google Scholar 

  60. Covello, P. S., & Gray, M. W. (1989). RNA editing in plant mitochondria. Nature, 341, 662–666.

    Article  CAS  Google Scholar 

  61. Gualberto, J. M., Weil, J.-H., & Grienenberger, J.-M. (1990). Editing of the wheat coxIII transcript: Evidence for twelve C to U and one U to C conversions and for sequence similarities around editing sites. Nucleic Acids Research, 18, 3771–3776.

    Article  CAS  Google Scholar 

  62. Gualberto, J. M., Lamattina, L., Bonnard, G., Weil, J.-H., & Grienenberger, J.-M. (1989). RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature, 341, 660–662.

    Article  CAS  Google Scholar 

  63. Schuster, W., Hiesel, R., Wissinger, B., & Brennicke, A. (1990). RNA editing in the cytochrome b locus of the higher plant Oenothera berteriana includes a U-to-C transition. Molecular and Cellular Biology, 10, 2428–2431.

    Article  CAS  Google Scholar 

  64. Hanson, M. R., & Bentolila, S. (2004). Interactions of mitochondrial and nuclear genes that affect male gametophyte development. The Plant Cell, 16, S154–S169.

    Article  CAS  Google Scholar 

  65. Young, E. G., & Hanson, M. R. (1987). A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell, 50, 41–49.

    Article  CAS  Google Scholar 

  66. Handa, H., Gualberto, J. M., & Grienenberger, J.-M. (1995). Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the “Polima” male-sterile cytoplasm in rapeseed (Brassica napus L.). Current Genetics, 28, 546–552.

    Article  CAS  Google Scholar 

  67. Araya, A., Zabaleta E., Blanc V., Bégu D., Hernould M., Mouras A., & Litvak S. (1998). RNA editing in plant mitochondria, cytoplasmic male sterility and plant breeding. Electronic Journal of Biotechnology, 1, 06–07.

    Google Scholar 

  68. Chakraborty, A., Mitra, J., Bhattacharyya, J., Pradhan, S., et al. (2015). Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines. Planta, 241, 1463–1479.

    Article  CAS  Google Scholar 

  69. Hernould, M., Suharsono, S., Litvak, S., Araya, A., & Mouras, A. (1993). Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proceedings of the National Academy of Sciences, 90, 2370–2374.

    Article  CAS  Google Scholar 

  70. De Cosa, B., Moar, W., Lee, S.-B., Miller, M., & Daniell, H. (2001). Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nature Biotechnology, 19, 71–74.

    Article  Google Scholar 

  71. Ruiz, O. N., & Daniell, H. (2005). Engineering cytoplasmic male sterility via the chloroplast genome by expression of β-ketothiolase. Plant Physiology, 138, 1232–1246.

    Article  CAS  Google Scholar 

  72. Nizampatnam, N. R., Doodhi, H., Narasimhan, Y. K., Mulpuri, S., & Viswanathaswamy, D. K. (2009). Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants. Planta, 229, 987–1001.

    Article  CAS  Google Scholar 

  73. Nizampatnam, N. R., & Kumar, V. D. (2011). Intron hairpin and transitive RNAi mediated silencing of orfH522 transcripts restores male fertility in transgenic male sterile tobacco plants expressing orfH522. Plant Molecular Biology, 76, 557–573.

    Article  CAS  Google Scholar 

  74. Yamamoto, M. P., Shinada, H., Onodera, Y., Komaki, C., et al. (2008). A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants. The Plant Journal, 54, 1027–1036.

    Article  CAS  Google Scholar 

  75. Kim, D. H., Kang, J. G., & Kim, B.-D. (2007). Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Molecular Biology, 63, 519–532.

    Article  CAS  Google Scholar 

  76. Hird, D. L., Paul, W., Hollyoak, J. S., & Scott, R. J. (2000). The restoration of fertility in male sterile tobacco demonstrates that transgene silencing can be mediated by T-DNA that has no DNA homology to the silenced transgene. Transgenic Research, 9, 91–102.

    Article  CAS  Google Scholar 

  77. Zabaleta, E., Mouras, A., Hernould, M., & Araya, A. (1996). Transgenic male-sterile plant induced by an unedited atp9 gene is restored to fertility by inhibiting its expression with antisense RNA. Proceedings of the National Academy of Sciences, 93, 11259–11263.

    Article  CAS  Google Scholar 

  78. Bayer, M., & Hess, D. (2005). Restoring full pollen fertility in transgenic male-sterile tobacco (Nicotiana tabacum L.) by Cre-mediated site-specific recombination. Molecular Breeding, 15, 193–203.

    Article  CAS  Google Scholar 

  79. Cao, B., Huang, Z., Chen, G., & Lei, J. (2010). Restoring pollen fertility in transgenic male-sterile eggplant by Cre/loxp-mediated site-specific recombination system. Genetics and molecular biology, 33, 298–307.

    Article  CAS  Google Scholar 

  80. Marimuthu, M. P., Jolivet, S., Ravi, M., Pereira, L., et al. (2011). Synthetic clonal reproduction through seeds. Science (New York, NY), 331, 876.

    Article  CAS  Google Scholar 

  81. Ravi, M., & Chan, S. W. (2010). Haploid plants produced by centromere-mediated genome elimination. Nature, 464, 615–618.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Council of Scientific and Industrial Research, Government of India DST-FIST, UGC-SAP, Government of India, for the facilities provided to the Department of Plant Sciences, University of Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pawan Shukla or Pulugurtha Bharadwaja Kirti.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Singh, N.K., Gautam, R. et al. Molecular Approaches for Manipulating Male Sterility and Strategies for Fertility Restoration in Plants. Mol Biotechnol 59, 445–457 (2017). https://doi.org/10.1007/s12033-017-0027-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0027-6

Keywords

Navigation