Skip to main content
Log in

Prolonged Production and Aggregation Complexity of Cold-Active Lipase from Pseudomonas proteolytica (GBPI_Hb61) Isolated from Cold Desert Himalaya

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas, being the common inhabitant of colder environments, are suitable for the production of cold-active enzymes. In the present study, a newly isolated strain of Pseudomonas from cold desert site in Indian Himalayan Region, was investigated for the production of cold-active lipase. The bacteria were identified as Pseudomonas proteolytica by 16S rDNA sequencing. Lipase production by bacteria was confirmed by qualitative assay using tributyrin and rhodamine-B agar plate method. The bacterium produced maximum lipase at 25 °C followed by production at 15 °C while utilizing olive, corn, as well as soybean oil as substrate in lipase production broth. Enzyme produced by bacteria was partially purified using ammonium sulphate fractionation. GBPI_Hb61 showed aggregation behaviour which was confirmed using several techniques including gel filtration chromatography, dynamic light scattering, and native PAGE. Molecular weight determined by SDS-PAGE followed by in-gel activity suggested two lipases of nearly similar molecular weight of ~50 kDa. The enzyme showed stability in wide range of pH from 5 to 11 and temperature up to 50 °C. The enzyme from GBPI_Hb61 exhibited maximum activity toward p-nitrophenyldecanoate (C10). The stability of enzyme was not affected with methanol while it retained more than 75% activity when incubated with ethanol, acetone, and hexane. The bacterium is likely to be a potential source for production of cold-active lipase with efficient applicability under multiple conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

pNP:

p-Nitrophenol

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]-1-propane sulfonate

NP-40:

Nonylphenoxy polyethoxyethanol

Brij-35:

Polyethylene glycol dodecyl ether

SDS:

Sodium dodecyl sulphate

PEG:

Poly ethylene glycol

References

  1. Gupta, R., Hupta, N., & Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781.

    Article  CAS  Google Scholar 

  2. de Godoy Daiha, K., Angeli, R., de Oliveira, S. D., & Almeida, R. V. (2015). Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. PLoS ONE, 10(6), e0131624. doi:10.1371/journal.pone.0131624.

    Article  Google Scholar 

  3. Joseph, B., Ramteke, P. W., & Thomas, G. (2008). Cold active microbial lipases: Some hot issues and recent developments. Biotechnology Advances, 26, 457–470.

    Article  CAS  Google Scholar 

  4. Haldane, J. B. S. (1930). Especificity of the lipases. In: R.H.A. Plimmer & F.G. Hopkins (Eds.), Monographs on biochemistryenzymes (pp. 102), 1st ed. Logmans: Green and Co.

  5. Tan, C. H., Show, P. L., Ooi, C. W., Ng, E. P., Lan, J. C., et al. (2015). Novel lipase purification methods—a review of the latest developments. Biotechnology Journal, 10, 31–44. doi:10.1002/biot.201400301.

    Article  CAS  Google Scholar 

  6. Kulakovaa, L., Galkina, A., Nakayamab, T., Nishinob, T., & Esakia, N. (2004). Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly Pro substitution near the active site on its catalytic activity and stability. Biochimica et Biophysica Acta, 1696, 59–65.

    Article  Google Scholar 

  7. Zeng, X., Xiao, X., Wang, P., & Wang, F. (2004). Screening and characterization of psychrotrophic lipolytic bacteria from deep sea sediments. Journal of Microbiology and Biotechnology, 14, 952–958.

    CAS  Google Scholar 

  8. Ryu, H. S., Kim, H. K., Choi, W. C., Kim, M. H., Park, S. Y., et al. (2006). New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Applied Microbiology and Biotechnology, 70, 321–326.

    Article  CAS  Google Scholar 

  9. Suzuki, T., Nakayama, T., Kurihara, T., Nishino, T., & Esaki, N. (2001). Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. Journal of Bioscience and Bioengineering, 92, 144–148.

    Article  CAS  Google Scholar 

  10. Kasan, R. C., Kaur, B., & Yadav, S. K. (2008). Isolation and identification of a psychrotrophic Acinetobacter sp. CR9 and characterization of its alkaline lipase. Journal of Basic Microbiology, 48, 207–212. doi:10.1002/jobm.200700160.

    Article  Google Scholar 

  11. Ugras, S., & Uzmez, S. (2016). Characterization of a newly identified lipase from a lipase-producing bacterium. Frontiers in Biology, 11(4), 323–330.

    Article  CAS  Google Scholar 

  12. Lee, H. K., Min, J. A., Sung, H. K., Won, H. S., & Byeong, C. J. (2003). Purification and characterization of cold active lipase from psychrotrophic Aeromonas sp. LPB4. Journal of Microbiology, 41, 22–27.

    CAS  Google Scholar 

  13. Giudice, A. L., Michaud, L., de Pascale, D., Domenico, M. D., & di Prisco, G. (2006). Lipolytic activity of Antarctic cold adapted marine bacteria. Journal of Applied Microbiology, 101, 1039–1048.

    Article  Google Scholar 

  14. Novototskaya-Vlasova, K. A., Petrovskaya, L. E., Kryukova, E., Rivkina, E. M., Dolgikh, D., et al. (2013). Expression and chaperone-assisted refolding of a new cold-active lipase from Psychrobacter cryohalolentis K5T. Protein Expression and Purification, 91, 96–103. doi:10.1016/j.pep.2013.07.011.

    Article  CAS  Google Scholar 

  15. Zhang, J., Lin, S., & Zeng, R. (2007). Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. Journal of Microbiology and Biotechnology, 17(4), 604–610.

    Google Scholar 

  16. Ali, M. S. M., Fuzi, S. F. M., Ganasen, M., Rahman, R. N. Z. R. A., Basri, M., et al. (2013). Structural adaptation of cold-active RTX lipase from Pseudomonas sp. strain AMS8 revealed via homology and molecular dynamics simulation approaches. BioMed Research International. doi:10.1155/2013/925373.

    Google Scholar 

  17. Alquati, C., de Gioia, L., Santarossa, G., Alberghina, L., Fantucci, P., et al. (2002). The cold-active lipase of Pseudomonas fragi: heterologous expression, biochemical characterization and molecular modelling. European Journal of Biochemistry, 269, 3321–3328.

    Article  CAS  Google Scholar 

  18. Maharana, A. K., & Pratima, R. (2015). A novel cold-active lipase from psychrotolerant Pseudomonas sp. AKM-L5 showed organic solvent resistant and suitable for detergent formulation. Journal of Molecular Catalysis B Enzymatic, 120, 173–178. doi:10.1016/j.molcatb.2015.07.005.

    Article  CAS  Google Scholar 

  19. Pandey, N., Dhakar, K., Jain, R., & Pandey, A. (2016). Temperature dependent lipase production from cold and pH tolerant species of Penicillium. Mycosphere. doi:10.5943/mycosphere/si/3b/5.

    Google Scholar 

  20. Jain, R., & Pandey, A. (2016). A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiological Research, 190, 63–71. doi:10.1016/j.micres.2016.04.017.

    Article  CAS  Google Scholar 

  21. Dhakar, K., Jain, R., Tamta, S., & Pandey, A. (2014). Prolonged laccase production by a cold and pH tolerant strain of Penicillium pinophilum (MCC 1049) isolated from a low temperature environment. Enzyme Research. doi:10.1155/2014/120708.

    Google Scholar 

  22. Pandey, A., Trivedi, P., Kumar, B., & Palni, L. M. S. (2006). Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Current Microbiology, 53, 102–107.

    Article  CAS  Google Scholar 

  23. Dhakar, K., & Pandey, A. (2016). Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Applied Microbiology Biotechnology, 100, 2499–2510.

    Article  CAS  Google Scholar 

  24. Pandey, A., & Palni, L. M. S. (1998). Microbes in Himalayan soils: Biodiversity and potential applications. Journal of Scientific & Industrial Research, 57, 668–673.

    Google Scholar 

  25. Yabuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., et al. (1992). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology and Immunology, 36(12), 1251–1275.

    Article  Google Scholar 

  26. Chen, W., & Kuo, T. (1993). A simple rapid method for the preparation of gram negative bacterial genomic DNA. Nucleic Acids Research, 21(9), 2260.

    Article  CAS  Google Scholar 

  27. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., et al. (2012). Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic Evolutionary Microbiology, 62, 716–721. doi:10.1099/ijs.0.038075-0.

    Article  CAS  Google Scholar 

  28. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  29. Shu, Z., Lin, R., Jiang, H., Zhang, Y., Wang, M., et al. (2009). A rapid and efficient method for directed screening of lipase-producing Burkholderia cepacia complex strains with organic solvent tolerance from rhizosphere. Journal of Bioscience and Bioengineering, 107(6), 658–661.

    Article  CAS  Google Scholar 

  30. Kanwar, S. S., Kaushal, R. K., Jawed, A., Gupta, R., & Chimni, S. S. (2005). Methods of inhibition of residual lipase activity in colorimetric assay: A comparative study. Indian Journal of Biochemistry and Biophysics, 42, 233–237.

    CAS  Google Scholar 

  31. Pinsirodom, P., & Parkin, K. L. (2001). Current protocols in food analytical chemistry. New York: Wiley.

    Google Scholar 

  32. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Annals of Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  33. Acharya, P., & Rao, N. M. (2003). Stability studies on a lipase from Bacillus subtilis in guanidinium chloride. Journal of Protein Chemistry, 22, 51–60.

    Article  CAS  Google Scholar 

  34. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  35. Prim, N., Sánchez, M., Ruiz, C., Pastor, F. I. J., & Díaz, P. (2003). Use of methylumbeliferyl-derivative substrates for lipase activity characterization. Journal of Molecular Catalysis B Enzymatic, 22, 339–346.

    Article  CAS  Google Scholar 

  36. Pandey, A., Dhakar, K., Sharma, A., Priti, P., Sati, P., et al. (2015). Thermophilic bacteria, that tolerate wide temperature and pH range, colonize the Soldhar (95 °C) and Ringigad (80 °C) hot springs of Uttarakhand, India. Annals of Microbiology, 65, 809–816.

    Article  CAS  Google Scholar 

  37. Arnau, V. C., Sánchez, L. A., & Delgado, O. D. (2015). Pseudomonas yamanorum sp. nov., a new psychrotolerant bacterium isolated from Sub-Antarctic environment (Tierra del Fuego, Ushuaia). International Journal of Systematic Evolutionary Microbiology, 65, 424–431. doi:10.1099/ijs.0.065201-0.

    Article  CAS  Google Scholar 

  38. López, N. L., Pettinari, M. J., Stackebrandt, E., Tribelli, P. M., Põtter, M., et al. (2009). Pseudomonas extremaustralis sp. nov., a poly (3-hydroxybutyrate) producer isolated from an antarctic environment. Current Microbiology, 59, 514–519. doi:10.1007/s00284-009-9469-9.

    Article  Google Scholar 

  39. Moreno, R., & Rojo, F. (2014). Features of Pseudomonas growing at low temperatures: another facet of their versatility. Environmental Microbiology Reports. doi:10.1111/1758-2229.12150.

    Google Scholar 

  40. Rashid, N., Shimada, Y., Ezaki, S., Atomi, H., & Imanaka, T. (2001). Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Applied and Environmental Microbiology, 67, 4064–4069.

    Article  CAS  Google Scholar 

  41. Velu, N., Divakar, K., Nandhinidevi, G., & Gautam, P. (2012). Lipase from Aeromonas caviae AU04: Isolation, purification and protein aggregation. Biocatalysis and Agricultural Biotechnology. doi:10.1016/j.bcab.2011.08.004.

    Google Scholar 

  42. Yong, S. K., Lim, B. H., Said, S. & Tey, L.-H. (2016). Optimisation, purification and characterisation of extracellular lipase from Botryococcus sudeticus (UTEX 2629). Journal of Molecular Catalysis B Enzymatic. doi:10.1016/j.molcatb.2016.02.004.

  43. Bisht, D., Yadav, S. K., Gautam, P., & Darmwal, N. D. (2012). Simultaneous production of alkaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeruginosa. Journal of Basic Microbiology, 52, 1–8. doi:10.1002/jobm.201200157.

    Article  Google Scholar 

  44. Kulkarni, N., & Garde, R. V. (2002). Production and properties of an alkaline thermophilic lipase from Pseudomonas fluorescens NS2W. Journal of Industrial Microbiology and Biotechnology, 28, 344–348.

    Article  CAS  Google Scholar 

  45. Sharma, R., Soni, S. K., Vohra, R. M., Jolly, R. S., Gupta, L. K., et al. (2002). Production of extracellular lipase from Bacillus sp. RSJ1 and its application in ester hydrolysis. Indian Journal of Microbiology, 42, 49–54.

    Google Scholar 

  46. Kiran, G. S., Shanmughapriya, S., Jayalakshimi, J., Selvin, J., Gandhimathi, R., et al. (2008). Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess and Biosystems Engineering, 31, 483–492. doi:10.1007/s00449-007-0186-0.

    Article  CAS  Google Scholar 

  47. Lin, S., Chiou, C., & Tsai, Y. (1995). Effect of triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111. Biotechnology Letters, 17, 959. doi:10.1007/BF00127434.

    Article  CAS  Google Scholar 

  48. Snellman, E. A., Sullivan, E. R., & Colwell, R. R. (2002). Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. European Journal of Biochemistry, 269, 5771–5779. doi:10.1046/j.1432-1033.2002.03235.x.

    Article  CAS  Google Scholar 

  49. Dandavate, V., Jinjala, J., Keharia, H., & Madamwar, D. (2009). Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresource technology, 100, 3374–3381. doi:10.1016/j.biortech.2009.02.011.

    Article  CAS  Google Scholar 

  50. de Lima, L. N., Aragon, C. C., Mateo, C., Palomo, J. M., Giordano, R. L. V., et al. (2013). Immobilization and stabilization of a bimolecular aggregate of the lipase from Pseudomonas fluorescens by multipoint covalent attachment. Process Biochemistry, 48, 118–123. doi:10.1016/j.procbio.2012.11.008.

    Article  Google Scholar 

  51. Chung, G. H., Lee, Y. P., Jeohn, G. H., Yoo, O. J., & Rhee, J. S. (1991). Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Agricultural and Biological Chemistry, 55, 2359–2365.

    CAS  Google Scholar 

  52. Madan, B., & Mishra, P. (2010). Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Applied Microbiology and Biotechnology, 85, 597. doi:10.1007/s00253-009-2131-4.

    Article  CAS  Google Scholar 

  53. Salameh, M. A., & Wiegel, J. (2010). Effects of detergents on activity, thermostability and aggregation of two alkali thermophilic lipases from Thermosyntropha lipolytica. Open Biochemistry Journal, 4, 22–28.

    Article  CAS  Google Scholar 

  54. Matsumoto, M., Kida, K., & Kondo, K. (2001). Enhanced activities of lipase pretreated with organic solvents. Journal of Chemical Technology and Biotechnology, 76, 1070–1073.

    Article  CAS  Google Scholar 

  55. Noel, M., & Combes, D. (2003). Effects of temperature and pressure on Rhizomucor miehei lipase stability. Journal of Biotechnology, 102, 23.

    Article  CAS  Google Scholar 

  56. Suen, W. C., Zhang, N., Xiao, L., Madison, V., & Zaks, A. (2004). Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Engineering Design and Selection, 17, 133–140.

    Article  CAS  Google Scholar 

  57. Li, X.-L., Shi, Y., Zhang, W.-H., Dai, Y.-J., Zhang, H.-T., et al. (2014). A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. Journal of Molecular Catalysis B Enzymatic, 102, 17–24. doi:10.1016/j.molcatb.2014.01.006.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. P.P. Dhyani (Director, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, India) for extending the facilities. Financial support from Ministry of Environment, Forest and Climate Change is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Pandey, A., Pasupuleti, M. et al. Prolonged Production and Aggregation Complexity of Cold-Active Lipase from Pseudomonas proteolytica (GBPI_Hb61) Isolated from Cold Desert Himalaya. Mol Biotechnol 59, 34–45 (2017). https://doi.org/10.1007/s12033-016-9989-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9989-z

Keywords

Navigation