Skip to main content
Log in

Improved RT-PCR Assay to Quantitate the Pri-, Pre-, and Mature microRNAs with Higher Efficiency and Accuracy

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Understanding of the functional significance of microRNAs (miRNAs) requires efficient and accurate detection method. In this study, we developed an improved miRNAs quantification system based on quantitative real-time polymerase chain reaction (qRT-PCR). This method showed higher efficiency and accuracy to survey the expression of primary miRNAs (pri-miRNAs), precursor miRNAs (pre-miRNAs), and mature miRNAs. Instead of relative quantification method, we quantified the pri-miRNAs and pre-miRNAs with absolute qRT-PCR based on SYBR Green I fluorescence. This improvement corrected for the inaccuracy caused by the differences in amplicon length and PCR efficiency. We also used SYBR Green method to quantify mature miRNAs based on the stem–loop qRT-PCR method. We extended the pairing part of the stem–loop reverse transcript (RT) primer from 6 to 11 bp, which greatly increased the efficiency of reverse transcription PCR (RT-PCR). The performance of the improved RT primer was tested using synthetic mature miRNAs and tissue RNA samples. Results showed that the improved RT primer demonstrated dynamic range of seven orders of magnitude and sensitivity of detection of hundreds of copies of miRNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Orellana, E. A., & Kasinski, A. L. (2015). MicroRNAs in cancer: A historical perspective on the path from discovery to therapy. Cancers, 7(3), 1388–1405.

    Article  Google Scholar 

  2. He, L., & Hannon, G. J. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531.

    Article  CAS  Google Scholar 

  3. Wang, X., Xu, X., Ma, Z., Huo, Y., Xiao, Z., Li, Y., & Wang, Y. (2011). Dynamic mechanisms for pre-miRNA binding and export by exportin-5. RNA, 17(8), 1511–1528.

    Article  CAS  Google Scholar 

  4. Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.

    Article  CAS  Google Scholar 

  5. Liu, G., Zhang, R., Xu, J., Wu, C. I., & Lu, X. (2015). Functional conservation of both CDS- and 3′-UTR-located microRNA binding sites between species. Molecular Biology and Evolution, 32(3), 623–628.

    Article  Google Scholar 

  6. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J., & Parker, R. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biology, 7, 719–723.

    Article  CAS  Google Scholar 

  7. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233.

    Article  CAS  Google Scholar 

  8. Sylvia, K., & Suresh, K. (2009). MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer and Metastasis Reviews, 28, 369–378.

    Article  Google Scholar 

  9. Lee, D. Y., Hayes, J. J., Pruss, D., & Wolffe, A. P. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell, 72(1), 73–84.

    Article  CAS  Google Scholar 

  10. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12(9), 735–739.

    Article  CAS  Google Scholar 

  11. Streit, S., Michalski, C. W., Erkan, M., Kleeff, J., & Friess, H. (2009). Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nature Protocols, 4(1), 37–43.

    Article  CAS  Google Scholar 

  12. Yin, J. Q., Zhao, R. C., & Morris, K. V. (2008). Profiling microRNA expression with microarrays. Trends in Biotechnology, 26, 70–76.

    Article  CAS  Google Scholar 

  13. Duan, D., Zheng, K. X., Shen, Y., Cao, R., Jiang, L., Lu, Z., et al. (2011). Label-free high-throughput microRNA expression profiling from total RNA. Nucleic Acids Research, 39(22), e154.

    Article  CAS  Google Scholar 

  14. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z. H., Lee, D. H., Julie, T., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33(20), e179.

    Article  Google Scholar 

  15. Pritchard, C. C., Cheng, H. H., & Tewari, M. (2012). MicroRNA profiling: Approaches and considerations. Nature Reviews Genetics, 13, 358–369.

    Article  CAS  Google Scholar 

  16. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  17. Thomas, D., Leea, E. J., Jianga, J., Sarkarb, A., Yang, L., Eltona, T. S., & Chen, C. (2008). Real-time PCR quantification of precursor and mature microRNA. Methods, 44, 31–38.

    Article  Google Scholar 

  18. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tusch, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858.

    Article  CAS  Google Scholar 

  19. Lau, N. C., Lee, P. L., Weinstein, E. G., & Bartel, D. P. (2001). An abundant class of tiny rnas with probable regulatory roles in Caenorhabditis elegans. Science, 294, 858–862.

    Article  CAS  Google Scholar 

  20. Lee, R. C., & Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294, 862–864.

    Article  CAS  Google Scholar 

  21. Lee, E. J., Baek, M., Gusev, Y., Brackett, D. J., Nuovo, G. J., & Schmittgen, T. D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA, 14(1), 35–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by “The Key Project of Science and Technology Commission of Shanghai Municipality (Nos. 12140900404 & 14140900502)”. We appreciate Dr. Changrui Lu for the constructive advice in English writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxun Zhou.

Additional information

Li Tong and Huihui Xue have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 74 kb)

Supplementary material 2 (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Xue, H., Xiong, L. et al. Improved RT-PCR Assay to Quantitate the Pri-, Pre-, and Mature microRNAs with Higher Efficiency and Accuracy. Mol Biotechnol 57, 939–946 (2015). https://doi.org/10.1007/s12033-015-9885-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9885-y

Keywords

Navigation