Skip to main content
Log in

Addition of Valproic Acid to CHO Cell Fed-Batch Cultures Improves Monoclonal Antibody Titers

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Improving the productivity of a biopharmaceutical Chinese hamster ovary (CHO) fed-batch cell culture can enable cost savings and more efficient manufacturing capacity utilization. One method for increasing CHO cell productivity is the addition of histone deacetylase (HDAC) inhibitors to the cell culture process. In this study, we examined the effect of valproic acid (VPA, 2-propylpentanoic acid), a branched-chain carboxylic acid HDAC inhibitor, on the productivity of three of our CHO cell lines that stably express monoclonal antibodies. Fed-batch shake flask VPA titrations on the three different CHO cell lines yielded cell line-specific results. Cell line A responded highly positively, cell line B responded mildly positively, and cell line C did not respond. We then performed factorial experiments to identify the optimal VPA concentration and day of addition for cell line A. After identifying the optimal conditions for cell line A, we performed verification experiments in fed-batch bioreactors for cell lines A and B. These experiments confirmed that a high dose of VPA late in the culture can increase harvest titer >20 % without greatly changing antibody aggregation, charge heterogeneity, and N-linked glycosylation profiles. Our results suggest that VPA is an attractive and viable small molecule enhancer of protein production for biopharmaceutical CHO cell culture processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kramer, O., Klausing, S., & Noll, T. (2010). Methods in mammalian cell line engineering: From random mutagenesis to sequence-specific approaches. Applied Microbiology and Biotechnology, 88(2), 425–436.

    Article  Google Scholar 

  2. Kim, J. Y., Kim, Y. G., & Lee, G. M. (2012). CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Applied Microbiology and Biotechnology, 93(3), 917–930.

    Article  CAS  Google Scholar 

  3. Li, F., Vijayasankaran, N., Shen, A. Y., Kiss, R., & Amanullah, A. (2010). Cell culture processes for monoclonal antibody production. mAbs, 2(5), 466–479.

    Article  Google Scholar 

  4. Allen, M. J., Boyce, J. P., Trentalange, M. T., Treiber, D. L., Rasmussen, B., Tillotson, B., et al. (2008). Identification of novel small molecule enhancers of protein production by cultured mammalian cells. Biotechnology and Bioengineering, 100(6), 1193–1204.

    Article  CAS  Google Scholar 

  5. Liu, C., Chu, I., & Hwang, S. (2001). Pentanoic acid, a novel protein synthesis stimulant for Chinese Hamster Ovary (CHO) cells. Journal of Bioscience and Bioengineering, 91(1), 71–75.

    CAS  Google Scholar 

  6. Mimura, Y., Lund, J., Church, S., Dong, S., Li, J., Goodall, M., et al. (2001). Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. Journal of Immunological Methods, 247(1–2), 205–216.

    Article  CAS  Google Scholar 

  7. Jiang, Z., & Sharfstein, S. T. (2008). Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnology and Bioengineering, 100(1), 189–194.

    Article  CAS  Google Scholar 

  8. Jeon, M. K., & Lee, G. M. (2007). Correlation between enhancing effect of sodium butyrate on specific productivity and mRNA transcription level in recombinant Chinese hamster ovary cells producing antibody. Journal of Microbiology and Biotechnology, 17(6), 1036–1040.

    CAS  Google Scholar 

  9. Hendrick, V., Winnepenninckx, P., Abdelkafi, C., Vandeputte, O., Cherlet, M., Marique, T., et al. (2001). Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: A cell cycle phases analysis. Cytotechnology, 36(1–3), 71–83.

    Article  CAS  Google Scholar 

  10. Kantardjieff, A., Jacob, N. M., Yee, J. C., Epstein, E., Kok, Y. J., Philp, R., et al. (2010). Transcriptome and proteome analysis of Chinese hamster ovary cells under low temperature and butyrate treatment. Journal of Biotechnology, 145(2), 143–159.

    Article  CAS  Google Scholar 

  11. Doerfler, W. (2006). De novo methylation, long-term promoter silencing, methylation patterns in the human genome, and consequences of foreign DNA insertion. Current Topics in Microbiology and Immunology, 301, 125–175.

    CAS  Google Scholar 

  12. Rountree, M. R., Bachman, K. E., Herman, J. G., & Baylin, S. B. (2001). DNA methylation, chromatin inheritance, and cancer. Oncogene, 20(24), 3156–3165.

    Article  CAS  Google Scholar 

  13. Sarkar, S., Abujamra, A. L., Loew, J. E., Forman, L. W., Perrine, S. P., & Faller, D. V. (2011). Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Research, 31(9), 2723–2732.

    CAS  Google Scholar 

  14. Backliwal, G., Hildinger, M., Kuettel, I., Delegrange, F., Hacker, D. L., & Wurm, F. M. (2008). Valproic acid: A viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnology and Bioengineering, 101(1), 182–189.

    Article  CAS  Google Scholar 

  15. Backliwal, G., Hildinger, M., Chenuet, S., Wulhfard, S., De Jesus, M., & Wurm, F. M. (2008). Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/L by transient transfection under serum-free conditions. Nucleic Acids Research, 36(15), e96.

    Article  Google Scholar 

  16. Wulhfard, S., Baldi, L., Hacker, D. L., & Wurm, F. (2010). Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. Journal of Biotechnology, 148(2–3), 128–132.

    Article  CAS  Google Scholar 

  17. Chirino, A. J., & Mire-Sluis, A. (2004). Characterizing biological products and assessing comparability following manufacturing changes. Nature Biotechnology, 22(11), 1383–1391.

    Article  CAS  Google Scholar 

  18. Pallavicini, M. G., DeTeresa, P. S., Rosette, C., Gray, J. W., & Wurm, F. M. (1990). Effects of methotrexate on transfected DNA stability in mammalian cells. Molecular and Cellular Biology, 10(1), 401–404.

    CAS  Google Scholar 

  19. Gandor, C., Leist, C., Fiechter, A., & Asselbergs, F. A. (1995). Amplification and expression of recombinant genes in serum-independent Chinese hamster ovary cells. FEBS Letters, 377(3), 290–294.

    Article  CAS  Google Scholar 

  20. Huang, Y. M., Hu, W., Rustandi, E., Chang, K., Yusuf-Makagiansar, H., & Ryll, T. (2010). Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnology Progress, 26(5), 1400–1410.

    Article  CAS  Google Scholar 

  21. Kshirsagar, R., McElearney, K., Gilbert, A., Sinacore, M., & Ryll, T. (2012). Controlling trisulfide modification in recombinant monoclonal antibody produced in fed-batch cell culture. Biotechnology and Bioengineering, 109(10), 2523–2532.

    Article  CAS  Google Scholar 

  22. Yang, Y., Mariati, Chusainow, J., & Yap, M. G. (2010). DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. Journal of Biotechnology, 147(3–4), 180–185.

    Article  CAS  Google Scholar 

  23. Wurm, F. (2013). CHO quasispecies: Implications for manufacturing processes. Processes, 1(3), 296–311.

    Article  Google Scholar 

  24. Lewis, N. E., Liu, X., Li, Y., Nagarajan, H., Yerganian, G., O’Brien, E., et al. (2013). Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology, 31(8), 759–765.

    Article  CAS  Google Scholar 

  25. Gawlitzek, M., Estacio, M., Furch, T., & Kiss, R. (2009). Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnology and Bioengineering, 103(6), 1164–1175.

    Article  CAS  Google Scholar 

  26. Lamotte, D., Buckberry, L., Monaco, L., Soria, M., Jenkins, N., Engasser, J. M., et al. (1999). Na-butyrate increases the production and alpha2,6-sialylation of recombinant interferon-gamma expressed by alpha2,6-sialyltransferase engineered CHO cells. Cytotechnology, 29(1), 55–64.

    Article  CAS  Google Scholar 

  27. Andersen, D. C., Bridges, T., Gawlitzek, M., & Hoy, C. (2000). Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnology and Bioengineering, 70(1), 25–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Biogen Idec Analytical Development and the Biogen Idec High Throughput Analytical Group for performing the Protein G and product quality analyses. We would also like to thank Kevin Ramer for review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W.C., Lu, J., Nguyen, N.B. et al. Addition of Valproic Acid to CHO Cell Fed-Batch Cultures Improves Monoclonal Antibody Titers. Mol Biotechnol 56, 421–428 (2014). https://doi.org/10.1007/s12033-013-9725-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9725-x

Keywords

Navigation