Skip to main content

Advertisement

Log in

Influence of Small RNAs on Biofilm Formation Process in Bacteria

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Small non-coding RNAs (sRNAs) play a significant role in regulation of bacterial physiological behaviors. After sensing any environmental cue such as fluctuation of nutrient concentration, temperature, pH, and osmolarity, these sRNAs interfere to transmit these signals to target regulators and genes. sRNAs have key role in biofilm formation process by base pairing with target mRNAs or interaction with modulating proteins to both positive and negative regulation mechanisms. There are various regulatory systems to characterize the initiation and formation of special bacterial biofilms that are mostly described as two component systems based on sRNAs functions. In this study, regulatory pathways that are important for biofilm formation and genetic responses to environmental stimuli in mature biofilms were evaluated. Some of the regulatory systems that produce common types of biofilms such as curli, PGA, cellulose and polysaccharides such as alginate, colonic acid, Psl and their involved sRNAs functions were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Usha, H. L., Kaiwar, A., & Mehta, D. (2010). Biofilm in endodontics: New understanding to an old problem. International Journal of Contemporary Dentistry, 1, 44–51.

    Google Scholar 

  2. Palmer, R. J., & White, D. C. (1997). Developmental biology of biofilms implications for treatment and control. Trends in Microbiology, 5, 435–440.

    Article  Google Scholar 

  3. Selene, M. A., & de Souza, G. (2012). Applications of biofilm in the degradation of contaminants in industrial effluents. SOAJ Biochemistry & Biotechnology, 1, 1–10.

    Google Scholar 

  4. Hoe, C. H., Raabe, C. A., Rozhdestvensky, T. S., & Tang, T. H. (2013). Bacterial sRNAs: Regulation in stress. International Journal of Medical Microbiology, 303, 217–229.

    Article  CAS  Google Scholar 

  5. Shao, Y., & Bassler, B. L. (2012). Quorum-sensing non-coding small RNAs use unique pairing regions to differentially control mRNA targets. Molecular Microbiology, 83, 599–611.

    Article  CAS  Google Scholar 

  6. Wassarman, K. M. (2002). Small RNAs in bacteria: Diverse regulators of gene expression in response to environmental changes. Cell, 109, 141–144.

    Article  CAS  Google Scholar 

  7. Fröhlich, K. S., & Vogel, J. (2009). Activation of gene expression by small RNA. Current Opinion in Microbiology, 12, 674–682.

    Article  Google Scholar 

  8. Marzi, S., & Romby, P. (2012). RNA mimicry, a decoy for regulatory proteins. Molecular Microbiology, 83, 1–6.

    Article  CAS  Google Scholar 

  9. Massé, E., Majdalani, N., & Gottesman, S. (2003). Regulatory roles for small RNAs in bacteria. Current Opinion in Microbiology, 6, 120–124.

    Article  Google Scholar 

  10. Waters, L. S., & Storz, G. (2009). Regulatory RNAs in bacteria. Cell, 136, 615–628.

    Article  CAS  Google Scholar 

  11. Chambers, J. R., & Sauer, K. (2013). Small RNAs and their role in biofilm formation. Trends in Microbiology, 21, 39–49.

    Article  CAS  Google Scholar 

  12. Aiba, H. (2007). Mechanism of RNA silencing by Hfq-binding small RNAs. Current Opinion in Microbiology, 10, 134–139.

    Article  CAS  Google Scholar 

  13. Thomason, M. K., & Storz, G. (2010). Bacterial antisense RNAs: How many are there and what are they doing? Annual Review of Genetics, 44, 167–188.

    Article  CAS  Google Scholar 

  14. Gottesman, S. (2005). Micros for microbes: Non-coding regulatory RNAs in bacteria. Trends in Genetics, 21, 399–404.

    Article  CAS  Google Scholar 

  15. Gripenland, J., Netterling, S., Loh, E., Tiensuu, T., Toledo-Arana, A., & Johansson, J. (2010). RNAs: Regulators of bacterial virulence. Nature Reviews Microbiology, 8, 857–866.

    Article  CAS  Google Scholar 

  16. Storz, G., Vogel, J., & Wassarman, K. M. (2012). Regulation by small RNAs in bacteria: Expanding frontiers. Molecular Cell, 43, 880–891.

    Article  Google Scholar 

  17. Hopkins, J. F., Panja, S., & Woodson, S. A. (2011). Rapid binding and release of Hfq from ternary complexes during RNA annealing. Nucleic Acids Research, 39, 5193–5202.

    Article  CAS  Google Scholar 

  18. Hwang, W., Arluison, V., & Hohng, S. (2011). Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing. Nucleic Acids Research, 39, 5131–5139.

    Article  CAS  Google Scholar 

  19. Soper, T., Mandin, P., Majdalani, N., Gottesman, S., & Woodson, S. A. (2010). Positive regulation by small RNAs and the role of Hfq. Proceedings of the National Academy of Sciences of the United States of America, 107, 9602–9607.

    Article  CAS  Google Scholar 

  20. Maki, K., Morita, T., Otaka, H., & Aiba, H. (2010). A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA. Molecular Microbiology, 76, 782–792.

    Article  CAS  Google Scholar 

  21. Møller, T., Franch, T., Hojrup, P., Keene, D. R., Bachinger, H. P., Brennan, R., et al. (2002). Hfq: A bacterial Sm-like protein that mediates RNA–RNA interaction. Molecular Cell, 9, 23–30.

    Article  Google Scholar 

  22. O’Toole, G. A., Gibbs, K. A., Hager, P. W., Phibbs, P. V., Jr., & Kolter, R. (2013). The global carbon metabolism regulator crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology, 182, 425–431.

    Article  Google Scholar 

  23. Jonas, K., Edwards, A. N., Simm, R., Romeo, T., Römling, U., & Melefors, O. (2008). The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Molecular Microbiology, 70, 236–257.

    Article  CAS  Google Scholar 

  24. Romeo, T., Vakulskas, C. A., & Babitzke, P. (2013). Post-transcriptional regulation on a global scale: Form and function of Csr/Rsm systems. Environmental Microbiology, 15, 313–324.

    Article  CAS  Google Scholar 

  25. Petrova, O. E., & Sauer, K. (2012). Sticky situations—key components that control bacterial surface attachment. Journal of Bacteriology, 194, 2413–2425.

    Article  CAS  Google Scholar 

  26. Gerstel, U., & Römling, U. (2003). The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Research in Microbiology, 154, 659–667.

    Article  CAS  Google Scholar 

  27. Mika, F., & Hengge, R. (2013). Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella. International Journal of Molecular Sciences, 14, 4560–4579.

    Article  CAS  Google Scholar 

  28. Kuchma, S. L., & O’Toole, G. A. (2000). Surface-induced and biofilm-induced changes in gene expression. Current Opinion in Microbiology, 11, 429–433.

    CAS  Google Scholar 

  29. Kokare, C. R., Chakraborty, S., Khopade, A. N., & Mahadik, K. R. (2009). Biofilm: Importance and applications. Indian Journal of Biotechnology, 8, 159–168.

    CAS  Google Scholar 

  30. Simoes, M., Simoes, L. C., & Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT Food Science and Technology, 43, 573–583.

    Article  CAS  Google Scholar 

  31. Vu, B., Chen, M., Crawford, R. J., & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14, 2535–2554.

    Article  CAS  Google Scholar 

  32. Povolotsky, T. L., & Hengge, R. (2012). ‘Life-style’ control networks in Escherichia coli: Signaling by the second messenger c-di-GMP. Journal of Biotechnology, 160, 10–16.

    Article  CAS  Google Scholar 

  33. Pesavento, C., & Hengge, R. (2009). Bacterial nucleotide-based second messengers. Current Opinion in Microbiology, 12, 170–176.

    Article  CAS  Google Scholar 

  34. Römling, U., & Amikam, D. (2006). Cyclic di-GMP as a second messenger. Current Opinion in Microbiology, 9, 218–228.

    Article  Google Scholar 

  35. Weber, H., Pesavento, C., Possling, A., Tischendorf, G., & Hengge, R. (2006). Cyclic-di-GMP-mediated signalling within the σs network of Escherichia coli. Molecular Microbiology, 62, 1014–1034.

    Article  CAS  Google Scholar 

  36. Steenackers, H., Hermans, K., Vanderleyden, J., & De Keersmaecker, S. J. (2011). Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Journal of Food Research, 45, 502–531.

    Google Scholar 

  37. Kader, A., Simm, R., Gerstel, U., Morr, M., & Römling, U. (2006). Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar typhimurium. Molecular Microbiology, 60, 602–616.

    Article  CAS  Google Scholar 

  38. Simm, R., Morr, M., Kader, A., Nimtz, M., & Römling, U. (2004). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Molecular Microbiology, 53, 1123–1134.

    Article  CAS  Google Scholar 

  39. Bejerano-Sagie, M., & Xavier, K. B. (2007). The role of small RNAs in quorum sensing. Current Opinion in Microbiology, 10, 189–198.

    Article  CAS  Google Scholar 

  40. Beloin, C., Roux, A., & Ghigo, J. M. (2008). Escherichia coli biofilms. Current Topics in Microbiology and Immunology, 322, 249–289.

    Article  CAS  Google Scholar 

  41. Wang, X., Dubey, A. K., Suzuki, K., Baker, C. S., Babitzke, P., & Romeo, T. (2005). CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Molecular Microbiology, 56, 1648–1663.

    Article  CAS  Google Scholar 

  42. Jonas, K., & Melefors, O. (2009). The Escherichia coli CsrB and CsrC small RNAs are strongly induced during growth in nutrient-poor medium. FEMS Microbiology Letters, 297, 80–86.

    Article  CAS  Google Scholar 

  43. Repoila, F., & Darfeuille, F. (2009). Small regulatory non-coding RNAs in bacteria: Physiology and mechanistic aspects. Biology of the Cell, 101, 117–131.

    Article  CAS  Google Scholar 

  44. Boehm, A., & Vogel, J. (2012). The csgD mRNA as a hub for signal integration via multiple small RNAs. Molecular Microbiology, 84, 1–5.

    Article  CAS  Google Scholar 

  45. Holmqvist, E., Reimegard, J., Sterk, M., Grantcharova, N., Romling, U., & Wagner, E. G. (2010). Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO Journal, 29, 1840–1850.

    Article  CAS  Google Scholar 

  46. Ogasawara, H., Yamamoto, K., & Ishihama, A. (2011). Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. Journal of Bacteriology, 193, 2587–2597.

    Article  CAS  Google Scholar 

  47. Cooley, B. J., Travis, T., Guillaume, L. H., Erin, R., Jamie, S., April, K., et al. (2012). Roles of Pel and Psl in very early biofilm development. Bulletin of the American Physical Society, 57(1).

  48. Tagliabue, L. (2009). The subtle biofilm regulation in Escherichia coli: CsgD and the yddV-dos operon. PhD thesis, University of Degli Studi di Milano, Italy.

  49. Byrd, M. S., Pang, B., Mishra, M., Swords, W. E., & Wozniak, D. J. (2010). The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-kappaB activation in A549 cells. MBio, 1(3), e00140-10.

    Article  Google Scholar 

  50. Mikkelsen, H., Sivaneson, M., & Filloux, A. (2011). Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environmental Microbiology, 13, 1666–1681.

    Article  CAS  Google Scholar 

  51. Brencic, A., McFarland, K. A., McManus, H. R., Castang, S., Mogno, I., Dove, S. L., et al. (2009). The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Molecular Microbiology, 73, 434–445.

    Article  CAS  Google Scholar 

  52. Irie, Y., Starkey, M., Edwards, A. N., Wozniak, D. J., Romeo, T., & Parsek, M. R. (2010). Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Molecular Microbiology, 78, 158–172.

    CAS  Google Scholar 

  53. Hentzer, M., Teitzel, G. M., Balzer, G. J., Heydorn, A., Molin, S., Givskov, M., et al. (2001). Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology, 183, 5395–5401.

    Article  CAS  Google Scholar 

  54. Davies, D. G., & Geesey, G. G. (1995). Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Applied and Environment Microbiology, 61, 860–867.

    CAS  Google Scholar 

  55. Davies, D. G., Chakabarty, A. M., & Geesey, G. G. (1993). Exopolysaccharide production in biofilms: Substratum activation of alginate gene expression by Pseudomonas aeruginosa. Applied and Environment Microbiology, 59, 1181–1186.

    CAS  Google Scholar 

  56. Garrett, E. S., Perlegas, D., & Wozniak, D. J. (1999). Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). Journal of Bacteriology, 181, 7401–7404.

    CAS  Google Scholar 

  57. Mika, F., Busse, S., Possling, A., Berkholz, J., Tschowri, N., Sommerfeldt, N., et al. (2012). Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. Molecular Microbiology, 84, 51–65.

    Article  CAS  Google Scholar 

  58. Tschowri, N., Lindenberg, S., & Hengge, R. (2012). Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of Escherichia coli. Molecular Microbiology, 85, 893–906.

    Article  CAS  Google Scholar 

  59. Zogaj, X., Bokranz, W., Nimtz, M., & Römling, U. (2003). Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infection and Immunity, 71, 4151–4158.

    Article  CAS  Google Scholar 

  60. Stout, V. (1996). Identification of the promoter region for the colanic acid polysaccharide biosynthetic genes in Escherichia coli K-12. Journal of Bacteriology, 178, 4273–4280.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda Jafarizadeh-Malmiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaz-Jahanian, M.A., Khodaparastan, F., Berenjian, A. et al. Influence of Small RNAs on Biofilm Formation Process in Bacteria. Mol Biotechnol 55, 288–297 (2013). https://doi.org/10.1007/s12033-013-9700-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9700-6

Keywords

Navigation