Skip to main content

Advertisement

Log in

Non-coding RNAs in Crop Genetic Modification: Considerations and Predictable Environmental Risk Assessments (ERA)

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ratcliff, F., Harrison, B. D., & Baulcombe, D. C. (1997). A similarity between viral defense and gene silencing in plants. Science, 276, 1558–1560.

    Article  CAS  Google Scholar 

  2. Ali, N., Datta, S. K., & Datta, K. (2010). RNA interference in designing transgenic crops. GM Crops, 1(4), 207–213.

    Article  Google Scholar 

  3. Waterhouse, P. M., Graham, M. W., & Wang, M. B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences USA, 95, 13959–13964.

    Article  CAS  Google Scholar 

  4. Allen, R. S., Millgate, A. G., Chitty, J. A., Thisleton, J., Miller, J. A. C., Fist, A. G., et al. (2004). RNAi-mediated replacement of morphine with the non narcotic alkaloid reticuline in Opium poppy. Nature Biotechnology, 22, 1559–1566.

    Article  CAS  Google Scholar 

  5. Fujii, N., Inui, T., Iwasa, K., Morishige, T., & Sato, F. (2007). Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Research, 16, 363–375.

    Article  CAS  Google Scholar 

  6. Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N., & Sano, H. (2003). Producing decaffeinated coffee plants. Nature, 2003(423), 823.

    Article  Google Scholar 

  7. Waterhouse, P. M., & Helliwell, C. A. (2003). Exploring plant genomes by RNA-induced gene silencing. Nature Review Genetics, 4, 29–38.

    Article  CAS  Google Scholar 

  8. Tang, G., & Galili, G. (2004). Using RNAi to improve plant nutritional value: From mechanism to application. Trends in Biotechnology, 22, 463–469.

    Article  CAS  Google Scholar 

  9. Huang, G., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences USA, 103, 14302–14306.

    Article  CAS  Google Scholar 

  10. Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., et al. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322–1326.

    Article  CAS  Google Scholar 

  11. Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., & Waterhouse, P. M. (2000). Total silencing by intron-spliced hairpin RNAs. Nature, 407, 319–320.

    Article  CAS  Google Scholar 

  12. Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., et al. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. Plant Journal, 27, 581–590.

    Article  CAS  Google Scholar 

  13. Tang, G., Reinhart, B. J., Bartel, D. P., & Zamore, P. D. (2003). A biochemical framework for RNA silencing in plants. Genes & Development, 17, 49–63.

    Article  CAS  Google Scholar 

  14. Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., et al. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24, 1420–1428.

    Article  CAS  Google Scholar 

  15. Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 18, 1121–1133.

    Article  CAS  Google Scholar 

  16. Ossowski, S., Schwab, R., & Weigel, D. (2008). Gene silencing in plants using artificial microRNAs and other small RNAs. Plant Journal, 53, 674–690.

    Article  CAS  Google Scholar 

  17. Sablok, G., Perez-Quintero, A. L., Hassan, M., Tatarinova, T. V., & Lopez, C. (2011). Artificial microRNAs (amiRNAs) engineering-On how microRNA-based silencing methods have affected current plant silencing research. Biochemical and Biophysical Research Communications, 406(3), 315–319.

    Article  CAS  Google Scholar 

  18. Warthmann, N., Chen, H., Ossowski, S., Weigel, D., & Herve, P. (2008). Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE, 3, e1829.

    Article  Google Scholar 

  19. Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., et al. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39, 1033–1037.

    Article  CAS  Google Scholar 

  20. Ivashuta, S., Banks, I. R., Wiggins, B. E., Zhang, Y., Ziegler, T. E., Roberts, J. K., et al. (2011). Regulation of gene expression in plants through miRNA inactivation. PLoS ONE, 6, e21330.

    Article  CAS  Google Scholar 

  21. Liu, Q., & Chen, Y. Q. (2010). A new mechanism in plant engineering: The potential roles of microRNAs in molecular breeding for crop improvement. Biotechnology Advances, 28, 301–307.

    Article  CAS  Google Scholar 

  22. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L., & Poething, R. S. (2004). SGS3 and SGS2/ SDE1/ RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes & Development, 18, 2368–2379.

    Article  CAS  Google Scholar 

  23. Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A. C., et al. (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis RNAs. Molecular Cell, 16, 69–79.

    Article  CAS  Google Scholar 

  24. Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). MicroRNA directed phasing during trans-acting siRNAs biogenesis in plants. Cell, 121, 207–221.

    Article  CAS  Google Scholar 

  25. de la Luz Gutie′rrez-Nava, M., Aukerman, M. J., Sakai, H., Tingey, S. V., Williams, R. W., et al. (2008). Artificial trans-acting siRNAs confer consistent and effective gene silencing. Plant Physiology, 147, 543–551.

    Article  Google Scholar 

  26. Atherton, K. T. (2002). Safety assessment of genetically modified crops. Toxicology, 181–182, 421–426.

    Article  Google Scholar 

  27. Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J. W., Burachik, M., Gray, A., et al. (2010). Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Research, 19(3), 425–436.

    Article  CAS  Google Scholar 

  28. Sijen, T., Vijn, I., Rebocho, A., van Blokland, R., Roelofs, D., Mol, J. N., et al. (2001). Transcriptional and posttranscriptional gene silencing are mechanistically related. Current Biology, 11(6), 436–440.

    Article  CAS  Google Scholar 

  29. Van Houdt, H., Bleys, A., & Depicker, A. (2003). RNA target sequences promote spreading of RNA silencing. Plant Physiology, 131, 245–253.

    Article  Google Scholar 

  30. Dunoyer, P., Schott, G., Himber, C., Meyer, D., Takeda, A., Carrington, J. C., et al. (2010). Small RNA duplexes function as mobile silencing signals between plant cells. Science, 328(5980), 912–916.

    Article  CAS  Google Scholar 

  31. Dunoyer, P., & Voinnet, O. (2009). Movement of RNA silencing between plant cells: Is the question now behind us? Trends in Plant Science, 14, 643–644.

    Article  CAS  Google Scholar 

  32. Molnar, A., Melnyk, C., & Baulcombe, D. C. (2011). Silencing signals in plants: A long journey for small RNAs. Genome Biology, 12, 215.

    Article  CAS  Google Scholar 

  33. Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S. W., & Baulcombe, D. C. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. European Molecular Biology Organisation Journal, 17, 6739–6746.

    Article  CAS  Google Scholar 

  34. Baulcombe, D. C. (2002). Viral suppression of systemic silencing. Trends in Microbiology, 10, 306–308.

    Article  CAS  Google Scholar 

  35. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., & Carrington, J. C. (2004). Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes & Development, 18, 1179–1186.

    Article  CAS  Google Scholar 

  36. Bisaro, D. M. (2006). Silencing suppression by geminivirus proteins. Virology, 344, 158–168.

    Article  CAS  Google Scholar 

  37. Merai, Z., Kerenyi, Z., Kertesz, S., Magna, M., Lakatos, L., & Silhavy, D. (2006). Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. Journal of Virology, 80, 5747–5756.

    Article  CAS  Google Scholar 

  38. Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M., et al. (2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25- nucleotide double-stranded RNAs. European Molecular Biology Organisation Journal, 1, 3070–3080.

    Article  Google Scholar 

  39. Zhang, X., Yuan, Y.-R., Pei, Y., Lin, S.-S., Tuschl, T., Patel, D. J., et al. (2006). Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes & Development, 20, 3255–3268.

    Article  CAS  Google Scholar 

  40. Voinnet, O., Lederer, C., & Baulcombe, D. C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 103, 157–167.

    Article  CAS  Google Scholar 

  41. Fusaro, A. F., Matthew, L., Smith, N. A., Curtin, S. J., Dedic-Hagan, J., Ellacott, G. A., et al. (2006). RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Reports, 7, 1168–1175.

    Article  CAS  Google Scholar 

  42. Lin, X., Ruan, X., Anderson, M. G., McDowell, J. A., Kroeger, P. E., Fesik, S. W., et al. (2005). siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Research, 33, 4527–4535.

    Article  CAS  Google Scholar 

  43. Birmingham, A., Anderson, E. M., Reynolds, A., Ilsley-Tyree, D., Leake, D., Fedorov, Y., et al. (2006). 3’ UTR seed matches, but not overall identity, are associated with RNAi off targets. Nature Methods, 3, 199–204.

    Article  CAS  Google Scholar 

  44. Ellstrand, N., Prentice, J., & Hancock, J. (1999). Gene flow and introgression from domesticated plants into their wildrelatives. Annual Review of Ecology and Systematics, 30, 539–563.

    Article  Google Scholar 

  45. Wolt, J. D., Peterson, R. K., Bystrak, P., & Meade, T. (2003). A screening level approach for non-target insect risk assessment: Transgenic Bt corn pollen and the monarch butterfly (Lepidoptera:Danaiidae). Environmental Entomology, 32, 237–246.

    Article  CAS  Google Scholar 

  46. Raybould, A. (2006). Problem formulation and hypothesis testing for environmental risk assessments of genetically modified crops. Environmental Biosafety Research, 5(3), 119–125.

    Article  Google Scholar 

  47. Nickson, T. E. (2008). Planning environmental risk assessment for genetically modified crops: Problem formulation for stress-tolerant crops. Plant Physiology, 147(2), 494–502.

    Article  CAS  Google Scholar 

  48. Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., et al. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnology, 21, 635–637.

    Article  CAS  Google Scholar 

  49. Jackson, A. L., & Linsley, P. S. (2004). Noise amidst the silence: Off-target effects of siRNAs? Trends in Genetics, 20, 521–524.

    Article  CAS  Google Scholar 

  50. Herman, E. (2005). Soybean allergenicity and suppression of the immunodominant allergen. Crop Science, 45, 462–467.

    Article  CAS  Google Scholar 

  51. Hsieh, Y. T., & Pan, T. M. (2006). Influence of planting papaya ringspot virus resistant transgenic papaya on soil microbial biodiversity. Journal of Agriculture and Food Chemistry, 54, 130–137.

    Article  CAS  Google Scholar 

  52. Capote, N., P′erez-Panad′es, J., Monz′o, C., Carbonell, E. A., Urbaneja, A., Scorza, R., et al. (2008). Risk assessment of the field release of transgenic European plums carrying the coat protein gene of Plum pox virus under Mediterranean conditions. Transgenic Research, 17(3), 367–377.

    Article  CAS  Google Scholar 

  53. Hilbeck, A., Meier, M., Rombke, J., Jansch, S., Teichmann, H., & Tappeser, B. (2011). Environmental risk assessment of genetically modified plants - concepts and controversies. Environmental Sciences Europe, 23, 13.

    Article  Google Scholar 

  54. Praveen, S., Ramesh, S. V., Mishra, A. K., Koundal, V., & Palukaitis, P. (2010). Silencing potential of viral derived RNAi constructs in tomato leaf curl virus-AC4 gene suppression in tomato. Transgenic Research, 19, 45–55.

    Article  CAS  Google Scholar 

  55. Nunes, A. C., Vianna, G. R., Cuneo, F., & Maya-Farfan, J. (2006). RNAi-mediated silencing of the myoinositol-1-phosphate synthase gene (GmMIPS1) in transgenic soya bean inhibited seed development and reduced phytate content. Planta, 224, 125–132.

    Article  CAS  Google Scholar 

  56. Qiu, S., Adema, C. M., & Lane, T. (2005). A computational study of off-target effects of RNA interference. Nucleic Acids Research, 33, 1834–1847.

    Article  CAS  Google Scholar 

  57. Xu, P., Zhang, Y., Kang, L., Roossinck, M. J., & Mysor, K. S. (2006). Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiology, 142, 429–440.

    Article  CAS  Google Scholar 

  58. Borja, M., Rubio, T., Scholthof, H. B., & Jackson, A. O. (1999). Restoration of wild-type virus by double recombination of tombusvirus mutants with a host transgene. Molecular Plant-Microbe Interactions, 12, 153–162.

    Article  CAS  Google Scholar 

  59. Gal, S., Pisan, B., Hohn, T., Grimsley, N., & Hohn, B. (1992). Agroinfection of transgenic plants leads to viable cauliflower mosaic virus by intermolecular recombination. Virology, 187, 525–533.

    Article  CAS  Google Scholar 

  60. Greene, A. E., & Allison, R. F. (1994). Recombination between viral RNA and transgenic plant transcripts. Science, 263, 1423–1425.

    Article  CAS  Google Scholar 

  61. Allison, R. F., Thompson, C., & Ahlquist, P. (1990). Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proceedings of the National Academy of Sciences of the United States of America, 87, 1820–1824.

    Article  CAS  Google Scholar 

  62. Allison R.F., Schneider W.L. and Deng M. (1999). Risk assessment of virus-resistant transgenic plants. In: .Proceedings of the 5th International Symposium on Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms. Braunschweig. Edited by J. Schiemann and R. Casper.

  63. Dzianott, A., Sztuba-Solińska, J., & Bujarski, J. J. (2012). Mutations in the antiviral RNAi defense pathway modify brome mosaic virus RNA recombinant profiles. Molecular Plant microbe interaction, 25(1), 97–106.

    Article  CAS  Google Scholar 

  64. Fuchs, M., & Gonsalves, D. (2007). Safety of virus-resistant transgenic plants two decades after their introduction: Lessons from realistic field risk assessment studies. Annual review of Phytopathology, 45(1), 173–202.

    Article  CAS  Google Scholar 

  65. Bag, S., Mitter, N., Eid, S., & Pappu, H. R. (2012). Complementation between two Tospoviruses facilitates the systemic movement of a plant virus silencing suppressor in an otherwise restrictive host. PLoS ONE, 7(10), e44803.

    Article  CAS  Google Scholar 

  66. Wang, X., Wang, P., Sun, S., Darwiche, S., Idnurm, A., & Heitman, J. (2012). Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans. PLoS Genetics, 8(8), e1002885.

    Article  CAS  Google Scholar 

  67. Di Nicola-Negri, E., Brunetti, A., Tavazza, M., & Ilardi, V. (2005). Hairpin RNA-mediated silencing of plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Research, 14, 989–994.

    Article  Google Scholar 

  68. Tenllado, F., Llave, C., & Diaz-Ruiz, J. R. (2004). RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 102, 85–96.

    Article  CAS  Google Scholar 

  69. Yin, G., Sun, Z., Liu, N., Zhang, L., Song, Y., Zhu, C., et al. (2009). Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Applied Microbiology and Biotechnology, 84, 323–333.

    Article  CAS  Google Scholar 

  70. Zhao, Y. Y., Yang, G., Wang-Pruski, G., & You, M. S. (2008). Phyllotreta striolata (Coleoptera: Chrysomelidae): Arginine kinase cloning and RNAi-based pest control. European Journal of Entomology, 105, 815–822.

    CAS  Google Scholar 

  71. Wang, Y., Zhang, H., Li, H., & Miao, X. (2011). Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS ONE, 6(4), e18644.

    Article  CAS  Google Scholar 

  72. Mao, Y. B., Cai, W. J., Wang, J. W., Hong, G. J., Tao, X. Y., Wang, L. J., et al. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25, 1307–1313.

    Article  CAS  Google Scholar 

  73. Gordon, K. H. J., & Waterhouse, P. M. (2007). RNAi for insect-proof plants. Nature Biotechnology, 25, 1231–1232.

    Article  CAS  Google Scholar 

  74. Problem Formulation for the Environmental Risk Assessment of RNAi Plants Conference Proceedings June 1–3, 2011, Center for Environmental Risk Assessment ILSI Research Foundation, Washington, DC.

  75. Whyard S.H., Cameron F.H., Moghaddam M., Lockett T.J.2011. European patent EP 2 333 061 A1 2011.

  76. Bertheau, Y., Helbling, J. C., Fortabat, M. N., Makhzami, S., Sotinel, I., Audeon, C., et al. (2009). Persistence of plant DNA sequences in the blood of dairy cows fed with genetically modified (Bt176) and conventional corn silage. Journal of Agriculture and Food Chemistry, 57, 509–516.

    Article  CAS  Google Scholar 

  77. Huang, G., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences USA, 103, 14302–14306.

    Article  CAS  Google Scholar 

  78. Ivashuta, S. I., Petrick, J. S., Heisel, S. E., Zhang, Y., Guo, L., Reynolds, T. L., et al. (2009). Endogenous small RNAs in grain: Semi-quantification and sequence homology to human and animal genes. Food and Chemical Toxicology, 47(2), 353–360.

    Article  CAS  Google Scholar 

  79. Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., et al. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Research, 22, 107–126.

    Google Scholar 

  80. Segal, G., Song, R., & Messing, J. (2003). A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics, 165, 387–397.

    CAS  Google Scholar 

  81. Andersson, M., Melander, M., Pojmark, P., Larsson, H., Bulow, L., & Hofvander, P. (2006). Targeted gene suppression by RNA interference: An efficient method for production of high-amylose potato lines. Journal of Biotechnology, 123, 137–148.

    Article  CAS  Google Scholar 

  82. Ridley, W. P., Shillito, R. D., Coats, I., Steiner, H.-Y., Shawgo, M., Dussold, P., et al. (2004). Development of the International Life Sciences Institute crop composition database. Journal of Food Composition and Analysis, 17, 423–438.

    Article  CAS  Google Scholar 

  83. Batista, R., Saibo, N., Lourenco, T., & Oliveira, M. M. (2008). Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proceedings of the National Academy of Sciences of the United States of America, 105, 3640–3645.

    Article  CAS  Google Scholar 

  84. Heinemann, J. A., Kurenbach, B., & Quist, D. (2011). Molecular profiling—a tool for addressing emerging gaps in the comparative risk assessment of GMOs. Environment International, 37, 1285–1293.

    Article  CAS  Google Scholar 

  85. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendecel, W., & Tuschl, T. (2001). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO Journal, 20, 6877–6888.

    Article  CAS  Google Scholar 

  86. Amarzguioui, M., Holen, T., Babaie, E., & Prydz, H. (2003). Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Research, 31, 589–595.

    Article  CAS  Google Scholar 

  87. Abdelgany, A., Wood, M., & Beeson, D. (2003). Allele-specific silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference. Human Molecular Genetics, 12, 2637–2644.

    Article  CAS  Google Scholar 

  88. Miller, V. M., Xia, H., Marrs, G. L., Gouvion, C. M., Lee, G., Davidson, B. L., et al. (2003). Allele-specific silencing of dominant disease genes. Proceedings of the National Academy of Sciences of the United States of America, 100, 7195–7200.

    Article  CAS  Google Scholar 

  89. Scholefield, J., Greenberg, L. J., Weinberg, M. S., Arbuthnot, P. B., Abdelgany, A., & Wood, M. J. (2009). Design of RNAi hairpins for mutation-specific silencing of Ataxin-7 and correction of a SCA7 phenotype. PLoS ONE, 4(9), e7232.

    Article  Google Scholar 

  90. Martínez, F., Lafforgue, G., Morelli, M. J., González-Candelas, F., Chua, N. H., Daròs, J. A., et al. (2012). Ultradeep sequencing analysis of population dynamics of virus escape mutants in RNAi-mediated resistant plants. Molecular Biology and Evolution, 29(11), 3297–3307.

    Google Scholar 

  91. Kjellsson, G., & Strandberg, M. (2001). Monitoring and surveillance of genetically modified higher plants. Boston: Birkhauser Verlag.

    Book  Google Scholar 

  92. Anklam, E., Gadani, F., Heinze, P., Pijnenburg, H., & Van Den Eede, G. (2002). Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products. European Food Research and Technology, 214, 3–26.

    Article  CAS  Google Scholar 

  93. Morisset, D., Stebih, D., Cankar, K., Zel, J., & Gruden, K. (2008). Alternative DNA amplification methods to PCR and their application in GMO detection: A review. European Food Research and Technology, 227(5), 1287–1297.

    Article  CAS  Google Scholar 

  94. Kiddle G., Hardinge P., Buttigieg N., Gandelman O., Pereira C., McElgunn C.J ., Rizzoli M., Jackson R., Appleton N., Moore C., Tisi L.C. and Murray J.A.H. (2012) GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use. BMC Biotechnology, 12(15).

  95. Henderson, I. R., Zhang, X. Y., Lu, C., Johnson, L., Meyers, B. C., Green, P. J., et al. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genetics, 38, 721–725.

    Article  CAS  Google Scholar 

  96. Yao Y.Y., Guo G.G., Ni Z.F., Sunkar R., Du J.K., Zhu J.K. and Sun Q.X. (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8, R96.

  97. Morozova, O., & Marra, M. A. (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics, 92, 255–264.

    Article  CAS  Google Scholar 

  98. Cullum, R., Alder, O., & Hoodless, P. A. (2011). The next generation: Using new sequencing technologies to analyse gene regulation. Respirology, 16, 210–222.

    Article  Google Scholar 

  99. Kovalic, D., Garnaat, C., Guo, L., Yan, Y., Groat, J., Silvanovich, A., et al. (2012). The use of NexGen sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. The Plant Genome, 5, 149–163.

    CAS  Google Scholar 

  100. Flint,S., Heidel, T., Loss, S., Osborne, J., Prescott, K. and Smith D (2012) Summary and Comparative Analysis of Nine National Approaches to Ecological Risk Assessment of Living Modified Organisms in the Context of the Cartagena Protocol on Biosafety, Annex III / Secretariat of the Convention on Biological Diversity (CBD Biosafety Technical Series; no. 02).

  101. James, Clive. 2011. Global Status of Commercialized Biotech/GM Crops. ISAAA Brief No. 43. ISAAA: Ithaca, NY.

Download references

Acknowledgments

The views expressed in the paper are the author’s and it does not necessarily reflect the stand-point of Indian Council of Agricultural Research (ICAR). The author expresses his gratitude to Dr. S. K. Srivastava, Director, Directorate of Soybean Research (DSR), Indore; Dr. K.C. Bansal, Director, National Bureau of Plant Genetic Resources (NBPGR), New Delhi, for permitting to participate in the National Agricultural Innovation Project (NAIP) sponsored training program on “Molecular Diagnostics for Risk Assessment and Management of Genetically Modified Crops” held at NBPGR, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, S.V. Non-coding RNAs in Crop Genetic Modification: Considerations and Predictable Environmental Risk Assessments (ERA). Mol Biotechnol 55, 87–100 (2013). https://doi.org/10.1007/s12033-013-9648-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9648-6

Keywords

Navigation