Skip to main content
Log in

A Quantitative Real-Time PCR Method Using an X-Linked Gene for Sex Typing in Pigs

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

At present, a wide range of molecular sex-typing protocols in wild and domestic animals are available. In pigs, most of these methods are based on PCR amplification of X–Y homologous genes followed by gel electrophoresis which is time-consuming and in some cases expensive. In this paper, we describe, for the first time, a SYBR green-based quantitative real-time PCR (qPCR) assay using an X-linked gene, the glycoprotein M6B, for genetic sexing of pigs. Taking into account the differences in the glycoprotein M6B gene copy number between genders, we determine the correct sex of 54 pig samples from either diaphragm or hair follicle from different breeds using the 2−ΔΔCT method for relative quantification. Our qPCR assay represents a quick, inexpensive, and reliable tool for sex determination in pigs. This new protocol could be easily adapted to other species in which the sex determination was required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., et al. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 346, 240–244.

    Article  CAS  Google Scholar 

  2. Aasen, E., & Medrano, J. F. (1990). Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. Biotechnology (NY), 8, 1279–1281.

    Article  CAS  Google Scholar 

  3. Pomp, D., Good, B. A., Geisert, R. D., Corbin, C. J., & Conley, A. J. (1995). Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or -11 pig embryos. Journal of Animal Science, 73, 1408–1415.

    CAS  Google Scholar 

  4. Sathasivam, K., Kageyama, S., Chikuni, K., & Notarianni, E. (1995). Sex determination in the domestic pig by DNA amplification using the HMG-box sequence. Animal Reproduction Science, 38, 321–326.

    Article  CAS  Google Scholar 

  5. Cho, I. C., Kang, S. Y., Lee, S. S., Choi, Y. L., Ko, M. S., Oh, M. Y., et al. (2005). Molecular sexing using SRY and ZF genes in pigs. Journal of Animal Science and Technology (Korean), 47, 317–324.

    Article  CAS  Google Scholar 

  6. Han, S. H., Yang, B. C., Ko, M. S., Oh, H. S., & Lee, S. S. (2010). Length difference between equine ZFX and ZFY genes and its application for molecular sex determination. Journal of Assisted Reproduction and Genetics, 27, 725–728.

    Article  Google Scholar 

  7. Guignot, F., Perreau, C., Cavarroc, C., Touze, J. L., Pougnard, J. L., Dupont, F., et al. (2011). Sex and PRNP genotype determination in preimplantation caprine embryos. Reproduction in Domestic Animals, 46, 656–663.

    Article  CAS  Google Scholar 

  8. Quilter, C. R., Blott, S. C., Mileham, A. J., Affara, N. A., Sargent, C. A., & Griffin, D. K. (2002). A mapping and evolutionary study of porcine sex chromosome genes. Mammalian Genome, 13, 588–594.

    Article  CAS  Google Scholar 

  9. Iwase, M., Satta, Y., Hirai, Y., Hirai, H., Imai, H., & Takahata, N. (2003). The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proceedings of the National Academy of Sciences of USA, 100, 5258–5263.

    Article  CAS  Google Scholar 

  10. Fontanesi, L., Scotti, E., & Russo, V. (2008). Differences of the porcine amelogenin X and Y chromosome genes (AMELX and AMELY) and their application for sex determination in pigs. Molecular Reproduction and Development, 75, 1662–1668.

    Article  CAS  Google Scholar 

  11. Langen, M., Peters, U., Korner, U., Gissel, C., Stanislawski, D., & Klein, G. (2010). Semiquantitative detection of male pork tissue in meat and meat products by PCR. Meat Science, 86, 821–824.

    Article  CAS  Google Scholar 

  12. Nakahori, Y., Hamano, K., Iwaya, M., & Nakagome, Y. (1991). Sex identification by polymerase chain reaction using X–Y homologous primer. American Journal of Medical Genetics, 39, 472–473.

    Article  CAS  Google Scholar 

  13. Pfeiffer, I., & Brenig, B. (2005). X- and Y-chromosome specific variants of the amelogenin gene allow sex determination in sheep (Ovis aries) and European red deer (Cervus elaphus). BMC Genetics, 6, 16.

    Article  CAS  Google Scholar 

  14. Weikard, R., Pitra, C., & Kuhn, C. (2006). Amelogenin cross-amplification in the family Bovidae and its application for sex determination. Molecular Reproduction and Development, 73, 1333–1337.

    Article  CAS  Google Scholar 

  15. Chang, H. W., Cheng, C. A., Gu, D. L., Chang, C. C., Su, S. H., Wen, C. H., et al. (2008). High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis. BMC Biotechnology, 8, 12.

    Article  Google Scholar 

  16. Rosenthal, N. F., Ellis, H., Shioda, K., Mahoney, C., Coser, K. R., & Shioda, T. (2010). High-throughput applicable genomic sex typing of chicken by TaqMan real-time quantitative polymerase chain reaction. Poultry Science, 89, 1451–1456.

    Article  CAS  Google Scholar 

  17. Kim, K. Y., Kwon, Y., Bazarragchaa, M., Park, A. J., Bang, H., Lee, W. B., et al. (2012). A real-time PCR-based amelogenin Y allele dropout assessment model in gender typing of degraded DNA samples. International Journal of Legal Medicine. doi:10.1007/s00414-011-0663-5

  18. Tesson, L., Heslan, J. M., Menoret, S., & Anegon, I. (2002). Rapid and accurate determination of zygosity in transgenic animals by real-time quantitative PCR. Transgenic Research, 11, 43–48.

    Article  CAS  Google Scholar 

  19. Ballester, M., Castelló, A., Ibáñez, E., Sánchez, A., & Folch, J. M. (2004). Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals. Biotechniques, 37, 610–613.

    CAS  Google Scholar 

  20. Ramayo-Caldas, Y., Castelló, A., Pena, R. N., Alves, E., Mercadé, A., Souza, C. A., et al. (2010). Copy number variation in the porcine genome inferred from a 60k SNP BeadChip. BMC Genomics, 11, 593.

    Article  Google Scholar 

  21. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  22. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1987). Current Protocols in Molecular Biology. New York: Greene Publishing Associates and Wiley–Interscience.

    Google Scholar 

  23. Ramírez, O., Ojeda, A., Tomás, A., Gallardo, D., Huang, L. S., Folch, J. M., et al. (2009). Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origen of pig breeds. Molecular Biology and Evolution, 26, 2061–2072.

    Article  Google Scholar 

  24. Frönicke, L., Chowdhary, B. P., Scherthan, H., & Gustavsson, I. (1996). A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mammalian Genome, 7, 285–290.

    Article  Google Scholar 

  25. Olinsky, S., Loop, B. T., DeKosky, A., Ripepi, B., Weng, W., Cummins, J., et al. (1996). Chromosomal mapping of the human M6 genes. Genomics, 33, 532–536.

    Article  CAS  Google Scholar 

  26. Combes, P., Bonnet-Dupeyron, M. N., Gauthier-Barichard, F., Schiffmann, R., Bertini, E., Rodriguez, D., et al. (2006). PLP1 and GPM6B intragenic copy number analysis by MAPH in 262 patients with hypomyelinating leukodystrophies: Identification of one partial triplication and two partial deletions of PLP1. Neurogenetics, 7, 31–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Miguel Pérez-Enciso for providing pig samples. This study has been funded by the Innovation Consolider-Ingenio 2010 Program (CSD2007-00036, Centre for Research in Agrigenomics). Y. Ramayo-Caldas was funded by a FPU PhD grant (AP2008-01450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ballester.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballester, M., Castelló, A., Ramayo-Caldas, Y. et al. A Quantitative Real-Time PCR Method Using an X-Linked Gene for Sex Typing in Pigs. Mol Biotechnol 54, 493–496 (2013). https://doi.org/10.1007/s12033-012-9589-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9589-5

Keywords

Navigation