Skip to main content
Log in

Changing the Metal Binding Specificity of Superoxide Dismutase from Thermus thermophilus HB-27 by a Single Mutation

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Metal binding of superoxide dismutase from Thermus thermophilus HB27 was analyzed by comparing the related structures and sequences from different origins. Mutants (Ile166Leu, Asp167Glu, and Ile166Leu-Asp167Glu) were prepared and characterized. The mutants Asp167Glu and Ile166Leu-Asp167Glu changed their binding specificities from manganese to iron, which were manifested by the differences in color of the enzyme solutions and by flame atomic absorption analysis. Specific activities of the three mutants were 112, 52, and 62% of that of the wild-type enzyme, respectively. Asp167Glu and Ile166Leu-Asp167Glu only retained 6.8 and 6.1%, respectively, of the original activities after dialysis against 1 mM EDTA. Tryptophan fluorescence measurement and native gel electrophoresis implied that the three mutants could fold into a less condensed structure. Their folding and changes in the ion binding sites of the modeled structures might be the reason for their low affinities to metal ions. These findings increased our understanding of metal binding specificity of superoxide dismutase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amano, A., Shizukuishi, S., Tamagawa, H., Iwakura, K., Tsunasawa, S., & Tsunemitsu, A. (1990). Characterization of superoxide dismutases purified from either anaerobically maintained or aerated Bacteroides gingivalis. Journal of Bacteriology, 172, 1457–1463.

    CAS  Google Scholar 

  2. Yamakura, F., Rardin, R. L., Petsko, G. A., Ringe, D., Hiraoka, B. Y., Nakayama, K., et al. (1998). Inactivation and destruction of conserved Trp159 of Fe-superoxide dismutase from Porphyromonas gingivalis by hydrogen peroxide. European Journal of Biochemistry, 253, 49–56. doi:10.1046/j.1432-1327.1998.2530049.x.

    Article  CAS  Google Scholar 

  3. Bannister, J. V., Bannister, W. H., & Rotilio, G. (1987). Aspects of the structure, function, and applications of superoxide dismutase. CRC Critical Reviews in Biochemistry, 22, 111–180. doi:10.3109/10409238709083738.

    Article  CAS  Google Scholar 

  4. Yamakura, F., Sugio, S., Hiraoka, B. Y., Ohmori, D., & Yokota, T. (2003). Pronounced conversion of the metal-specific activity of superoxide dismutase from Porphyromonas gingivalis by the mutation of a single amino acid (Gly155Thr) located apart from the active site. Biochemistry, 42, 10790–10799. doi:10.1021/bi0349625.

    Article  CAS  Google Scholar 

  5. Hiraoka, B. Y., Yamakura, F., Sugio, S., & Nakayama, K. (2000). A change of the metal-specific activity of a cambialistic superoxide dismutase from Porphyromonas gingivalis by a double mutation of Gln-70 to Gly and Ala-142 to Gln. The Biochemical Journal, 345, 345–350. doi:10.1042/0264-6021:3450345.

    Article  CAS  Google Scholar 

  6. Wintjens, R., Noel, C., May, A. C., Gerbod, D., Dufernez, F., Capron, M., et al. (2004). Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. The Journal of Biological Chemistry, 279, 9248–9254. doi:10.1074/jbc.M312329200.

    Article  CAS  Google Scholar 

  7. Bunting, K., Cooper, J. B., Badasso, M. O., Tickle, I. J., Newton, M., Wood, S. P., et al. (1998). Engineering a change in metal-ion specificity of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis—X-ray structure analysis of site-directed mutants. European Journal of Biochemistry, 251, 795–803. doi:10.1046/j.1432-1327.1998.2510795.x.

    Article  CAS  Google Scholar 

  8. Miller, A. F., Schwartz, A. L., & Vance, C. K. (1999). Mechanism of redox tuning in Fe- and Mn-superoxide dismutase. Journal of Inorganic Biochemistry, 74, 41.

    Google Scholar 

  9. Ludwig, M. L., Metzger, A. L., Pattridge, K. A., & Stallings, W. C. (1991). Manganese superoxide dismutase from Thermus thermophilus. A structural model refined at 1.8 Å resolution. Journal of Molecular Biology, 219, 335–358. doi:10.1016/0022-2836(91)90569-R.

    Article  CAS  Google Scholar 

  10. Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, T., Liesegang, H., et al. (2004). The genome sequence of the extreme thermophile Thermus thermophilus. Nature Biotechnology, 22, 547–553. doi:10.1038/nbt956.

    Article  CAS  Google Scholar 

  11. Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474. doi:10.1111/j.1432-1033.1974.tb03714.x.

    Article  CAS  Google Scholar 

  12. Roth, E. F., Jr, & Gilbert, H. S. (1984). The pyrogallol assay for superoxide dismutase: absence of a glutathione artifact. Analytical Biochemistry, 137, 50–53. doi:10.1016/0003-2697(84)90344-0.

    Article  CAS  Google Scholar 

  13. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. doi:10.1093/nar/25.24.4876.

    Article  CAS  Google Scholar 

  14. Clamp, M., Cuff, J., Searle, S. M., & Barton, G. J. (2004). The Jalview Java alignment editor. Bioinformatics (Oxford, England), 20, 426–427. doi:10.1093/bioinformatics/btg430.

    Article  CAS  Google Scholar 

  15. Sanchez, R., & Sali, A. (2000). Comparative protein structure modeling. Introduction and practical examples with modeller. Methods in Molecular Biology (Clifton, NJ), 143, 97–129.

    CAS  Google Scholar 

  16. Laskowski, R. A., MacArthur, M. W., & Thornton, J. M. (1998). Validation of protein models derived from experiment. Current Opinion in Structural Biology, 8, 631–639. doi:10.1016/S0959-440X(98)80156-5.

    Article  CAS  Google Scholar 

  17. Kerfeld, C. A., Yoshida, S., Tran, K. T., Yeates, T. O., Cascio, D., Bottin, H., et al. (2003). The 1.6 Å resolution structure of Fe-superoxide dismutase from the thermophilic cyanobacterium Thermosynechococcus elongatus. Journal of Biological Inorganic Chemistry, 8, 707–714. doi:10.1007/s00775-003-0469-0.

    Article  CAS  Google Scholar 

  18. Sugio, S., Hiraoka, B. Y., & Yamakura, F. (2000). Crystal structure of cambialistic superoxide dismutase from Porphyromonas gingivalis. European Journal of Biochemistry, 267, 3487–3495. doi:10.1046/j.1432-1327.2000.01373.x.

    Article  CAS  Google Scholar 

  19. Choi, M. Y., Cardarelli, L., Therien, A. G., & Deber, C. M. (2004). Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations. Biochemistry, 43, 8077–8083. doi:10.1021/bi0494525.

    Article  CAS  Google Scholar 

  20. Therien, A. G., Grant, F. E., & Deber, C. M. (2001). Interhelical hydrogen bonds in the CFTR membrane domain. Nature Structural Biology, 8, 597–601. doi:10.1038/89631.

    Article  CAS  Google Scholar 

  21. da Silva, A. C., Kendrick-Jones, J., & Reinach, F. C. (1995). Determinants of ion specificity on EF-hands sites. Conversion of the Ca2+/Mg2+ site of smooth muscle myosin regulatory light chain into a Ca(2+)-specific site. The Journal of Biological Chemistry, 270, 6773–6778. doi:10.1074/jbc.270.12.6773.

    Article  Google Scholar 

Download references

Acknowledgments

We will give our sincere thanks to Dr. Hu Zhu (China University of Petroleum, East China) for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Qiu, A., Meng, F. et al. Changing the Metal Binding Specificity of Superoxide Dismutase from Thermus thermophilus HB-27 by a Single Mutation. Mol Biotechnol 42, 146–153 (2009). https://doi.org/10.1007/s12033-009-9149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9149-9

Keywords

Navigation