Skip to main content

Advertisement

Log in

Dysregulated ceramides metabolism via PTPN11 exposes a metabolic vulnerability to breast cancer metastasis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer is a prevalent malignant tumor, posing a significant threat to women's health globally due to its increasing incidence and tendency to affect younger patients. Protein tyrosine phosphatases (PTPs) are a class of enzymes that have emerged as potential targets for various tumors, including breast cancer, because they can modulate oncogenic tyrosine kinases, which are both tumor-suppressive and oncogenic. The regulation of tyrosine phosphorylation levels is crucial for cell proliferation and differentiation. Although the clinical biomarker potential of PTPs is not fully explored, there is evidence to suggest that they may serve as clinical biomarkers and therapeutic targets for breast cancer. We found that increased expression levels of PTPN11 and PTPN3 were associated with a higher risk of death in patients with breast cancer, while PTPN11 and PTPN18 are significantly associated with overall survival in patients with estrogen receptor-positive (ER+) breast cancer. Meanwhile, PTPN11 expression was found to be negatively associated with survival in patients with ER+ breast cancer. Furthermore, PTPN11 exposes a metabolic vulnerability to breast cancer metastasis via dysregulated ceramide metabolism. Therefore, we speculate that PTPN11 has the potential to serve as a therapeutic target for breast cancer by regulating lipid metabolism reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available in the “TCGA” dataset” (http://ualcan.path.uab.edu/cgi-bin/TCGAExHeatMap2.pl?size=25&cancer=BRCA).

References

  1. Huang J, et al. Global incidence and mortality of breast cancer: a trend analysis. Aging (Albany NY). 2021;13:5748–803. https://doi.org/10.18632/aging.202502.

    Article  PubMed  Google Scholar 

  2. Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin Cancer Biol. 2020;60:14–27. https://doi.org/10.1016/j.semcancer.2019.08.012.

    Article  CAS  PubMed  Google Scholar 

  3. Eugenio DS, et al. Breast cancer features in women under the age of 40 years. Rev Assoc Med Bras. 2016;1992(62):755–61. https://doi.org/10.1590/1806-9282.62.08.755.

    Article  Google Scholar 

  4. Cardoso F, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann Oncol. 2019;30:1194–220. https://doi.org/10.1093/annonc/mdz173.

    Article  CAS  PubMed  Google Scholar 

  5. Tang W, et al. Digital breast tomosynthesis plus mammography, magnetic resonance imaging plus mammography and mammography alone: a comparison of diagnostic performance in symptomatic women. Clin Hemorheol Microcirc. 2017;66:105–16. https://doi.org/10.3233/CH-16242.

    Article  PubMed  Google Scholar 

  6. Nunes-Xavier CE, Martin-Perez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta. 1836;211–226:2013. https://doi.org/10.1016/j.bbcan.2013.06.001.

    Article  CAS  Google Scholar 

  7. Kim M, Baek M, Kim DJ. Protein tyrosine signaling and its potential therapeutic implications in carcinogenesis. Curr Pharm Des. 2017;23:4226–46. https://doi.org/10.2174/1381612823666170616082125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dubreuil V, Sap J, Harroch S. Protein tyrosine phosphatase regulation of stem and progenitor cell biology. Semin Cell Dev Biol. 2015;37:82–9. https://doi.org/10.1016/j.semcdb.2014.09.012.

    Article  CAS  PubMed  Google Scholar 

  9. Wang S, et al. UCSCXenaShiny: an R/CRAN package for interactive analysis of UCSC Xena data. Bioinformatics. 2022;38:527–9. https://doi.org/10.1093/bioinformatics/btab561.

    Article  CAS  PubMed  Google Scholar 

  10. Chandrashekar DS, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58. https://doi.org/10.1016/j.neo.2017.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang Z, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102. https://doi.org/10.1093/nar/gkx247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 2010;1:274–8. https://doi.org/10.4103/0974-7788.76794.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Modhukur V, et al. MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018;10:277–88. https://doi.org/10.2217/epi-2017-0118.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang C, et al. SurvivalMeth: a web server to investigate the effect of DNA methylation-related functional elements on prognosis. Brief Bioinform. 2021. https://doi.org/10.1093/bib/bbaa162.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gao J, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013. https://doi.org/10.1126/scisignal.2004088.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Szklarczyk D, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–12. https://doi.org/10.1093/nar/gkaa1074.

    Article  CAS  PubMed  Google Scholar 

  17. Warde-Farley D, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214-220. https://doi.org/10.1093/nar/gkq537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dennis G Jr, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.

    Article  PubMed  Google Scholar 

  19. Zhou Y, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523. https://doi.org/10.1038/s41467-019-09234-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han H, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46:D380–6. https://doi.org/10.1093/nar/gkx1013.

    Article  CAS  PubMed  Google Scholar 

  21. Li T, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–14. https://doi.org/10.1093/nar/gkaa407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gray KA, Seal RL, Tweedie S, Wright MW, Bruford EA. A review of the new HGNC gene family resource. Hum Genomics. 2016;10:6. https://doi.org/10.1186/s40246-016-0062-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ubhi T, Brown GW. Exploiting DNA replication stress for cancer treatment. Cancer Res. 2019;79:1730–9. https://doi.org/10.1158/0008-5472.CAN-18-3631.

    Article  CAS  PubMed  Google Scholar 

  24. Tang M, O’Grady S, Crown J, Duffy MJ. MYC as a therapeutic target for the treatment of triple-negative breast cancer: preclinical investigations with the novel MYC inhibitor, MYCi975. Breast Cancer Res Treat. 2022;195:105–15. https://doi.org/10.1007/s10549-022-06673-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-beta signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022;21:104. https://doi.org/10.1186/s12943-022-01569-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miricescu D, et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms22010173.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen J, Zhao X, Yuan Y, Jing JJ. The expression patterns and the diagnostic/prognostic roles of PTPN family members in digestive tract cancers. Cancer Cell Int. 2020;20:238. https://doi.org/10.1186/s12935-020-01315-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7:833–46. https://doi.org/10.1038/nrm2039.

    Article  CAS  PubMed  Google Scholar 

  29. Sahu R, Pattanayak SP. Strategic developments & future perspective on gene therapy for breast cancer: role of mTOR and Brk/ PTK6 as molecular targets. Curr Gene Ther. 2020;20:237–58. https://doi.org/10.2174/1566523220999200731002408.

    Article  CAS  PubMed  Google Scholar 

  30. Akdeniz D, et al. Effects of chemotherapy on contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers: a nationwide cohort study. Breast. 2022;61:98–107. https://doi.org/10.1016/j.breast.2021.12.007.

    Article  PubMed  Google Scholar 

  31. Li Y, et al. Long non-coding RNA UCA1 promotes breast cancer by upregulating PTP1B expression via inhibiting miR-206. Cancer Cell Int. 2019;19:275. https://doi.org/10.1186/s12935-019-0958-z.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yu M, et al. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J. 2019;286:1136–53. https://doi.org/10.1111/febs.14724.

    Article  CAS  PubMed  Google Scholar 

  33. Geng Q, Xian R, Yu Y, Chen F, Li R. SHP-1 acts as a tumor suppressor by interacting with EGFR and predicts the prognosis of human breast cancer. Cancer Biol Med. 2021;19:468–85. https://doi.org/10.20892/j.issn.2095-3941.2020.0501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu L, et al. HePTP promotes migration and invasion in triple-negative breast cancer cells via activation of Wnt/beta-catenin signaling. Biomed Pharmacother. 2019;118: 109361. https://doi.org/10.1016/j.biopha.2019.109361.

    Article  CAS  PubMed  Google Scholar 

  35. Shen J, et al. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med. 2016;5:2061–8. https://doi.org/10.1002/cam4.772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Z, Xu W, Ren X, Xu J, Chen J. Puerarin promotes DUSP1 expression by regulating miR-133a-3p in breast cancer. Mol Med Rep. 2019;19:205–12. https://doi.org/10.3892/mmr.2018.9682.

    Article  CAS  PubMed  Google Scholar 

  37. Glondu-Lassis M, et al. PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of SRC kinase. Cancer Res. 2010;70:5116–26. https://doi.org/10.1158/0008-5472.CAN-09-4368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Revillion F, et al. Expression of the putative tumor suppressor gene PTPN13/PTPL1 is an independent prognostic marker for overall survival in breast cancer. Int J Cancer. 2009;124:638–43. https://doi.org/10.1002/ijc.23989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carlucci A, et al. PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J Biol Chem. 2010;285:39260–70. https://doi.org/10.1074/jbc.M110.174706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jongmans MC, et al. Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation. Eur J Hum Genet. 2011;19:870–4. https://doi.org/10.1038/ejhg.2011.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bentires-Alj M, et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004;64:8816–20. https://doi.org/10.1158/0008-5472.CAN-04-1923.

    Article  CAS  PubMed  Google Scholar 

  42. Wang LB, et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell. 2021;39:509-528 e520. https://doi.org/10.1016/j.ccell.2021.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Zhang F, Niu R. Functions of Shp2 in cancer. J Cell Mol Med. 2015;19:2075–83. https://doi.org/10.1111/jcmm.12618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan Y, et al. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3beta signaling pathway. Cancer Biol Med. 2020;17:707–25. https://doi.org/10.20892/j.issn.2095-3941.2020.0056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang HM, et al. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes. Cell Res. 2014;24:1067–90. https://doi.org/10.1038/cr.2014.99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saddoughi SA, Ogretmen B. Diverse functions of ceramide in cancer cell death and proliferation. Adv Cancer Res. 2013;117:37–58. https://doi.org/10.1016/B978-0-12-394274-6.00002-9.

    Article  CAS  PubMed  Google Scholar 

  47. Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 2018;18:33–50. https://doi.org/10.1038/nrc.2017.96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of Southeast University. The abbreviations are presented in Table S4.

Funding

This work was financially supported by the Zhishan Scholars Programs of Southeast University (2242021R41070).

Author information

Authors and Affiliations

Authors

Contributions

Data curation and formal analysis, SQ, TW, and HW; original draft, HW.

Corresponding author

Correspondence to Hongmei Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The studies involving human participants were reviewed and approved by Ningxia Medical University General Hospital Scientific Research Ethics Committee (KYLL-2023-0440).

Consent to participate

The patients/participants provided their written informed consent to participate in this study.

Consent for publication

Not applicable for that section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, S., Wang, T. & Wang, H. Dysregulated ceramides metabolism via PTPN11 exposes a metabolic vulnerability to breast cancer metastasis. Med Oncol 40, 310 (2023). https://doi.org/10.1007/s12032-023-02187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02187-3

Keywords

Navigation