Skip to main content
Log in

Upregulation of TUBG1 expression promotes hepatocellular carcinoma development

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Tubulin γ-1 (TUBG1) is a highly conserved component of the centrosome and its deregulation is involved in the development of several types of cancer. However, the role of TUBG1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we found that TUBG1 was upregulated in human HCC cells and tissues and that TUBG1 upregulation was associated with promoter hypomethylation in HCC tissues. TUBG1 knockdown suppressed the proliferation, invasion, and migration of HCC cells. While TUBG1 expression was positively correlated with CD4 + memory T lymphocyte infiltration, it was negatively correlated with CD4 + regulatory T-cell infiltration in human HCC tissues. Furthermore, TUBG1 expression was positively correlated with the expression of genes involved in cell division. Noticeably, high expression of TUBG1 was associated with poor prognosis in patients with HCC. Overall, our findings revealed that TUBG1 promotes hepatocarcinogenesis by increasing proliferation, invasion, and migration of HCC cells and may regulate T lymphocyte infiltration. The current findings provide important insights into TUBG1 regulation in HCC, which could provide new therapeutic targets for hepatocarcinoma which has a very high incidence and mortality rate worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

BP:

Biological process

CC:

Cellular component

DFS:

Disease-free survival

DMEM:

Dulbecco’s modified eagle medium

DSS:

Disease-specific survival

FBS:

Fetal bovine serum

GO:

Gene Ontology

GTEx:

Genotype-tissue expression

HCC:

Hepatocellular carcinoma

ICGC:

International cancer genome consortium

KEGG:

Kyoto encyclopedia of genes and genomes

K-M:

Kaplan–Meier

LIHC:

Liver hepatocellular carcinoma

LIRI-JP:

Liver Cancer-RIKEN, Japan

MF:

Molecular function

OS:

Overall survival

PFS:

Progression-free survival

siRNA:

Small interfering RNA

TCGA:

The cancer genome atlas

TILs:

Tumor-infiltrating lymphocytes

TUBG1 :

Tubulin gamma-1

TUBG2 :

Tubulin γ-2

UALCAN:

The University of Alabama at Birmingham Cancer data analysis Portal

References

  1. Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159(335–49):e15. https://doi.org/10.1053/j.gastro.2020.02.068.

    Article  Google Scholar 

  2. Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18:223–38. https://doi.org/10.1038/s41575-020-00381-6.

    Article  PubMed  Google Scholar 

  3. Ahn JC, Teng PC, Chen PJ, Posadas E, Tseng HR, Lu SC, et al. Detection of circulating tumor cells and their implications as a biomarker for diagnosis, prognostication, and therapeutic monitoring in hepatocellular carcinoma. Hepatology. 2021;73:422–36. https://doi.org/10.1002/hep.31165.

    Article  PubMed  Google Scholar 

  4. Dutcher SK. The tubulin fraternity alpha to eta. Curr Opin Cell Biol. 2001;13:49–54. https://doi.org/10.1016/s0955-0674(00)00173-3.

    Article  CAS  PubMed  Google Scholar 

  5. Stathatos GG, Dunleavy JEM, Zenker J, O’Bryan MK. Delta and epsilon tubulin in mammalian development. Trends Cell Biol. 2021;31:774–87. https://doi.org/10.1016/j.tcb.2021.03.010.

    Article  CAS  PubMed  Google Scholar 

  6. Akhmanova A, Steinmetz MO. Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol. 2015;16:711–26. https://doi.org/10.1038/nrm4084.

    Article  CAS  PubMed  Google Scholar 

  7. Mukherjee A. Conduit PT. γ-TuRCs. Curr Biol. 2019;29:R398-400. https://doi.org/10.1016/j.cub.2019.04.013.

    Article  CAS  PubMed  Google Scholar 

  8. Hećimović H, Bosnjak J, Demarin V. Prevalence of mood dysfunction in epilepsy patients in Croatia. Coll Antropol. 2008;32(Suppl 1):65–8.

    PubMed  Google Scholar 

  9. Stearns T, Evans L, Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell. 1991;65:825–36. https://doi.org/10.1016/0092-8674(91)90390-k.

    Article  CAS  PubMed  Google Scholar 

  10. Wise DO, Krahe R, Oakley BR. The gamma-tubulin gene family in humans. Genomics. 2000;67:164–70. https://doi.org/10.1006/geno.2000.6247.

    Article  CAS  PubMed  Google Scholar 

  11. Yuba-Kubo A, Kubo A, Hata M, Tsukita S. Gene knockout analysis of two gamma-tubulin isoforms in mice. Dev Biol. 2005;282:361–73. https://doi.org/10.1016/j.ydbio.2005.03.031.

    Article  CAS  PubMed  Google Scholar 

  12. Draberova E, Sulimenko V, Vinopal S, Sulimenko T, Sladkova V, D’Agostino L, et al. Differential expression of human gamma-tubulin isotypes during neuronal development and oxidative stress points to a gamma-tubulin-2 prosurvival function. FASEB J. 2017;31:1828–46. https://doi.org/10.1096/fj.201600846RR.

    Article  CAS  PubMed  Google Scholar 

  13. Nigg EA, Raff JW. Centrioles, centrosomes, and cilia in health and disease. Cell. 2009;139:663–78. https://doi.org/10.1016/j.cell.2009.10.036.

    Article  CAS  PubMed  Google Scholar 

  14. Shao W, Yang J, He M, Yu XY, Lee CH, Yang Z, et al. Centrosome anchoring regulates progenitor properties and cortical formation. Nature. 2020;580:106–12. https://doi.org/10.1038/s41586-020-2139-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Camargo Ortega G, Falk S, Johansson PA, Peyre E, Broix L, Sahu SK, et al. The centrosome protein AKNA regulates neurogenesis via microtubule organization. Nature. 2019;567:113–7. https://doi.org/10.1038/s41586-019-0962-4.

    Article  CAS  PubMed  Google Scholar 

  16. Blanco I, Kuchenbaecker K, Cuadras D, Wang X, Barrowdale D, de Garibay GR, et al. Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers. PLoS One. 2015;10:e0120020. https://doi.org/10.1371/journal.pone.0120020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Olson JE, Wang X, Pankratz VS, Fredericksen ZS, Vachon CM, Vierkant RA, et al. Centrosome-related genes, genetic variation, and risk of breast cancer. Breast Cancer Res Treat. 2011;125:221–8. https://doi.org/10.1007/s10549-010-0950-8.

    Article  CAS  PubMed  Google Scholar 

  18. Alvarado-Kristensson M. γ-tubulin as a signal-transducing molecule and meshwork with therapeutic potential. Signal Transduction Targeted Ther. 2018;3:24. https://doi.org/10.1038/s41392-018-0021-x.

    Article  CAS  Google Scholar 

  19. Caracciolo V, D’Agostino L, Draberova E, Sladkova V, Crozier-Fitzgerald C, Agamanolis DP, et al. Differential expression and cellular distribution of gamma-tubulin and betaIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J Cell Physiol. 2010;223:519–29. https://doi.org/10.1002/jcp.22077.

    Article  CAS  PubMed  Google Scholar 

  20. Chengcheng L, Raza SHA, Shengchen Y, Mohammedsaleh ZM, Shater AF, Saleh FM, et al. Bioinformatics role of the WGCNA analysis and co-expression network identifies of prognostic marker in lung cancer. Saudi J Biol Sci. 2022;29:3519–27. https://doi.org/10.1016/j.sjbs.2022.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dementyeva E, Kryukov F, Kubiczkova L, Nemec P, Sevcikova S, Ihnatova I, et al. Clinical implication of centrosome amplification and expression of centrosomal functional genes in multiple myeloma. J Transl Med. 2013;11:77. https://doi.org/10.1186/1479-5876-11-77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maounis NF, Dráberová E, Mahera E, Chorti M, Caracciolo V, Sulimenko T, et al. Overexpression of γ-tubulin in non-small cell lung cancer. Histol Histopathol. 2012;27:1183–94. https://doi.org/10.14670/hh-27.1183.

    Article  CAS  PubMed  Google Scholar 

  23. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60. https://doi.org/10.1093/nar/gkz430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1. https://doi.org/10.1126/scisignal.2004088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27. https://doi.org/10.1016/j.neo.2022.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82. https://doi.org/10.1038/s41587-019-0114-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and gene expression. Hum Mol Genet. 2009;18:R1-8. https://doi.org/10.1093/hmg/ddp011.

    Article  CAS  PubMed  Google Scholar 

  28. Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015;16:172–83. https://doi.org/10.1038/nrg3871.

    Article  CAS  PubMed  Google Scholar 

  29. Gromley A, Jurczyk A, Sillibourne J, Halilovic E, Mogensen M, Groisman I, et al. A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J Cell Biol. 2003;161:535–45. https://doi.org/10.1083/jcb.200301105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Müller H, Fogeron ML, Lehmann V, Lehrach H, Lange BM. A centrosome-independent role for gamma-TuRC proteins in the spindle assembly checkpoint. Science. 2006;314:654–7. https://doi.org/10.1126/science.1132834.

    Article  CAS  PubMed  Google Scholar 

  31. Nayak T, Edgerton-Morgan H, Horio T, Xiong Y, De Souza CP, Osmani SA, et al. Gamma-tubulin regulates the anaphase-promoting complex/cyclosome during interphase. J Cell Biol. 2010;190:317–30. https://doi.org/10.1083/jcb.201002105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferguson RL, Maller JL. Centrosomal localization of cyclin E-Cdk2 is required for initiation of DNA synthesis. Curr Biol. 2010;20:856–60. https://doi.org/10.1016/j.cub.2010.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hopkins JL, Lan L, Zou L. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 2022;36:278–93. https://doi.org/10.1101/gad.349431.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nat Rev Immunol. 2022. https://doi.org/10.1038/s41577-022-00751-y.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6:254. https://doi.org/10.1038/s41392-021-00648-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hojyo S, Tumes D, Murata A, Tokoyoda K. Multiple developmental pathways lead to the generation of CD4 T-cell memory. Int Immunol. 2020;32:589–95. https://doi.org/10.1093/intimm/dxaa051.

    Article  CAS  PubMed  Google Scholar 

  37. Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T Cells and human disease. Annu Rev Immunol. 2020;38:541–66. https://doi.org/10.1146/annurev-immunol-042718-041717.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Editage (www.editage.cn) for English language editing.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers 81972648, 82172915, and 81773011) and Chongqing Medical University Program for Youth Innovation in Future Medicine (Grant Number W0084).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. K-FT conceived and designed the study. Z-jW, Z-zD, M-zH, J-nL, HL, M-mS, S-jZ, H-jS, and JG performed the experiments and analyzed the data. Z-jW and Z-zD drafted the manuscript. K-FT reviewed the manuscript. K-FT and A-LH supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kai-Fu Tang.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

We declare no relevant information regarding the ethical conduct in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zj., Dai, Zz., Hu, Mz. et al. Upregulation of TUBG1 expression promotes hepatocellular carcinoma development. Med Oncol 40, 96 (2023). https://doi.org/10.1007/s12032-023-01966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-01966-2

Keywords

Navigation