Skip to main content

Advertisement

Log in

FAT4 activation inhibits epithelial-mesenchymal transition (EMT) by promoting autophagy in H2228/Cer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

As a tumor suppressor in lung cancer, FAT atypical cadherin 4 (FAT4) has a critical role in epithelial-mesenchymal transition (EMT). However, the role of FAT4 in ceritinib-resistant anaplastic lymphoma kinase (ALK) positive non-small cell lung cancer (NSCLC) EMT has not been reported. It is necessary to discuss the role of FAT4 in this process and its potential mechanism of interaction. We found that the expression level of FAT4 was downregulated markedly in ceritinib-resistant NCI-H2228 (H2228/Cer) cells. Jujuboside A, a FAT4 activator, diminished EMT and metastasis of H2228/Cer cells. Importantly, autophagy inhibition inverted the inhibitory effect of FAT4 activation on EMT. Furthermore, we found the regulatory action of FAT4 on autophagy was related to proteasome 26S subunit ubiquitin receptor and non-ATPase 4 (PSMD4) and proteasome 20S subunit beta 4 (PSMB4), and the inhibitory effect of autophagy on EMT might be related to ROS/NF-κB/IκB-α and Wnt/β-catenin pathways. In conclusion, FAT4 activation can inhibit the process of EMT in H2228/Cer cells by promoting autophagy, which provides a potential target for ceritinib-resistant ALK positive NSCLC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.

    Article  CAS  Google Scholar 

  2. Chen C, Huang X, Peng M, et al. Multiple primary lung cancer: a rising challenge. J Thorac Dis. 2019;11(Suppl 4):S523–36.

    Article  Google Scholar 

  3. Lei Y, Lei Y, Shi X, et al. EML4-ALK fusion gene in non-small cell lung cancer. Oncol Lett. 2022;24(2):277.

    Article  CAS  Google Scholar 

  4. Gristina V, La Mantia M, Iacono F, et al. The emerging therapeutic landscape of ALK inhibitors in non-small cell lung cancer. Pharmaceuticals (Basel). 2020;13(12):474.

    Article  CAS  Google Scholar 

  5. Fukuda K, Takeuchi S, Arai S, et al. Epithelial-to-mesenchymal transition is a mechanism of ALK inhibitor resistance in lung cancer independent of ALK mutation status. Cancer Res. 2019;79(7):1658–70.

    Article  CAS  Google Scholar 

  6. Haratake N, Toyokawa G, Seto T, et al. The mechanisms of resistance to second- and third-generation ALK inhibitors and strategies to overcome such resistance. Expert Rev Anticancer Ther. 2021;21(9):975–88.

    Article  CAS  Google Scholar 

  7. Katoh M. Function and cancer genomics of FAT family genes (review). Int J Oncol. 2012;41(6):1913–8.

    Article  CAS  Google Scholar 

  8. Ning Y, Yang Y, Zheng H, et al. Increased expression of FAT4 suppress metastasis of lung adenocarcinoma through regulating MAPK pathway and associated with immune cells infiltration. Cancer Med. 2022. https://doi.org/10.1002/cam4.4977.

    Article  Google Scholar 

  9. Pan M, Chen Q, Lu Y, et al. MiR-106b-5p regulates the migration and invasion of colorectal cancer cells by targeting FAT4. 2020. Biosci Rep. https://doi.org/10.1042/BSR20200098.

  10. Malgundkar SH, Burney I, Al Moundhri M, et al. FAT4 silencing promotes epithelial-to-mesenchymal transition and invasion via regulation of YAP and beta-catenin activity in ovarian cancer. BMC Cancer. 2020;20(1):374.

    Article  CAS  Google Scholar 

  11. Wang L, Li K, Wang C, et al. miR-107 regulates growth and metastasis of gastric cancer cells via activation of the PI3K-AKT signaling pathway by down-regulating FAT4. Cancer Med. 2019;8(11):5264–73.

    Article  CAS  Google Scholar 

  12. Wei R, Xiao Y, Song Y, et al. FAT4 regulates the EMT and autophagy in colorectal cancer cells in part via the PI3K-AKT signaling axis. J Exp Clin Cancer Res. 2019;38(1):112.

    Article  Google Scholar 

  13. Cai J, Feng D, Hu L, et al. FAT4 functions as a tumour suppressor in gastric cancer by modulating Wnt/beta-catenin signalling. Br J Cancer. 2015;113(12):1720–9.

    Article  CAS  Google Scholar 

  14. Galluzzi L, Pietrocola F, Levine B, et al. Metabolic control of autophagy. Cell. 2014;159(6):1263–76.

    Article  CAS  Google Scholar 

  15. White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 2009;15(17):5308–16.

    Article  Google Scholar 

  16. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.

    Article  CAS  Google Scholar 

  17. Xu C, Cao H, Sui Y, et al. CDCA4 suppresses epithelial-mesenchymal transtion (EMT) and metastasis in non-small cell lung cancer through modulating autophagy. Cancer Cell Int. 2021;21(1):48.

    Article  CAS  Google Scholar 

  18. Han JH, Kim YK, Kim H, et al. Snail acetylation by autophagy-derived acetyl-coenzyme A promotes invasion and metastasis of KRAS-LKB1 co-mutated lung cancer cells. Cancer Commun (Lond). 2022;42(8):716–49.

    Article  Google Scholar 

  19. Wang Z, Zhou C, Yang S. The roles, controversies, and combination therapies of autophagy in lung cancer. Cell Biol Int. 2022;46(1):3–11.

    Article  Google Scholar 

  20. Gao M, Liu T, Li J, et al. YAN, a novel microtubule inhibitor, inhibits P-gp and MRP1 function and induces mitotic slippage followed by apoptosis in multidrug-resistant A549/Taxol cells. Toxicol In Vitro. 2020;69:104971.

    Article  CAS  Google Scholar 

  21. Zheng D, Chang X, Liu Y, et al. 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol reverses EGF-induced cell migration and invasion through down-regulation of MDM2 in breast cancer cell lines. Cancer Biol Ther. 2019;20(4):513–23.

    Article  CAS  Google Scholar 

  22. Gao M, Yang Y, Gao Y, et al. The anti-MDR efficacy of YAN against A549/Taxol cells is associated with its inhibition on glycolysis and is further enhanced by 2-deoxy-d-glucose. Chem Biol Interact. 2022;354:109843.

    Article  CAS  Google Scholar 

  23. Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn. 2018;247:462–72.

    Article  Google Scholar 

  24. Shen Z, Zhu D, Liu J, et al. 27-Hydroxycholesterol induces invasion and migration of breast cancer cells by increasing MMP9 and generating EMT through activation of STAT-3. Environ Toxicol Pharmacol. 2017;51:1–8.

    Article  CAS  Google Scholar 

  25. Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366:818–22.

    Article  CAS  Google Scholar 

  26. Wang Y, Zhang H. Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol. 2019;1206:67–83.

    Article  CAS  Google Scholar 

  27. Qiang L, He YY. Autophagy deficiency stabilizes TWIST1 to promote epithelial-mesenchymal transition. Autophagy. 2014;10(10):1864–5.

    Article  CAS  Google Scholar 

  28. Chen HT, Liu H, Mao MJ, et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 2019;18(1):101.

    Article  Google Scholar 

  29. Zhang X, Liu J, Liang X, et al. History and progression of fat cadherins in health and disease. Onco Targets Ther. 2016;9:7337–43.

    Article  CAS  Google Scholar 

  30. Li SY, Wang H, Mai HF, et al. Down-regulated long non-coding RNA RNAZFHX4-AS1 suppresses invasion and migration of breast cancer cells via FAT4-dependent Hippo signaling pathway. Cancer Gene Ther. 2019;26(11–12):374–87.

    Article  CAS  Google Scholar 

  31. Barr MP, Gray SG, Hoffmann AC, et al. Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS ONE. 2013;8(1):e54193.

    Article  CAS  Google Scholar 

  32. Choe C, Shin YS, Kim C, et al. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition. Onco Targets Ther. 2015;8:3665–78.

    Article  CAS  Google Scholar 

  33. Ferrell K, Wilkinson CR, Dubiel W, Gordon C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci. 2000;25:83–8.

    Article  CAS  Google Scholar 

  34. Demishtein A, Fraiberg M, Berko D, et al. SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy. 2017;13(10):1697–708.

    Article  CAS  Google Scholar 

  35. Cohen-Kaplan V, Ciechanover A, Livneh I. Stress-induced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation. Autophagy. 2017;13(4):759–60.

    Article  CAS  Google Scholar 

  36. Murata S, Yashiroda H, Tanaka K. Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol. 2009;10(2):104–15.

    Article  CAS  Google Scholar 

  37. Montenegro-Venegas C, Fienko S, Anni D, et al. Bassoon inhibits proteasome activity via interaction with PSMB4. Cell Mol Life Sci. 2021;78(4):1545–63.

    Article  CAS  Google Scholar 

  38. Li Y, Zhou Q, Shen J, et al. Down-regulation of PSMD4 can attenuate autophagy, enhance the accumulation of intracellular ROS, and increase the sensitivity of epithelial ovarian cancer to carboplatin by inhibiting the NF-kappaB pathway. Transl Cancer Res. 2021;10(11):4756–72.

    Article  CAS  Google Scholar 

  39. Chang H, Li J, Qu K, et al. CRIF1 overexpression facilitates tumor growth and metastasis through inducing ROS/NFkappaB pathway in hepatocellular carcinoma. Cell Death Dis. 2020;11(5):332.

    Article  CAS  Google Scholar 

  40. McDade TP, Perugini RA, Vittimberga FJ Jr, et al. Ubiquitin-proteasome inhibition enhances apoptosis of human pancreatic cancer cells. Surgery. 1999;126:371–7.

    Article  CAS  Google Scholar 

  41. Zhang J, Wang X, Vikash V, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965.

    Article  Google Scholar 

  42. Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5(1):a007898.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (81872394), the Natural Science Foundation of Liaoning Province of China (2020-MS-187), and Innovation and Entrepreneurship Training Program of Shenyang Pharmaceutical University for the generous financial support (LR2020080).

Funding

This study was supported by the National Natural Science Foundation of China, 81872394 and Natural Science Foundation of Liaoning Province, 2020-MS-187 to Daiying Zuo.

Author information

Authors and Affiliations

Authors

Contributions

YY: Methodology, Investigation, Formal analysis, Writing-Original Draft. YL, QY and ZL: Investigation, Methodology, Validation. Xing Chang: Methodology, Resources. HY and JL: Investigation, Validation. ZL: Software, Resources. DZ: Conceptualization, Project administration, Funding acquisition, Writing-Review and Editing.

Corresponding author

Correspondence to Daiying Zuo.

Ethics declarations

Conflict of interest

The authors declare that they have no financial, personal or professional conflict of interest.

Ethical approval

Not applicable. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 166 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, Y., Yang, Q. et al. FAT4 activation inhibits epithelial-mesenchymal transition (EMT) by promoting autophagy in H2228/Cer cells. Med Oncol 40, 64 (2023). https://doi.org/10.1007/s12032-022-01934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01934-2

Keywords

Navigation