Skip to main content

Advertisement

Log in

Antiproliferative and cytotoxic effects of bioactive compounds isolated from Onosma bourgaei

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Onosma species have been used commonly for traditional medicine for years due to their bioactive compounds content. Onosma bourgaei aerial part was extracted with hexane and methanol successively. The methanol extract was subjected to chromatographic techniques to isolate allantoin (1), 3,4-dihydroxybenzaldehyde (2), luteolin-7-O-glucoside (3), apigenin-7-O-β-glucoside (4), diosmetin-7-O-β-glucoside (5), rosmarinic acid (6), and globoidnan A (7). The structure of isolated compounds were identified by spectroscopic techniques such as 1D-NMR, 2D-NMR, FTIR, and LC-TOF/MS/MS. Antiproliferative activity of extract and natural compounds were carried out using HeLa (human epithelial cervix adenocarcinoma, ATCC® CCL-2™), HT29 (human colorectal adenocarcinoma, ATCC® HTB38™), MCF7 (human mammary gland adenocarcinoma, ATCC® HTB22™), and A549 (human lung carcinoma, ATCC® CCL185™) cancerous cells and normal cells, FL (human epithelial amnion cell, ATCC® CCL62™). Lactate dehydrogenase (LDH) was performed for cytotoxicity. The compounds, 4, 6, and 7 displayed the strong antiproliferative activity against corresponding cell lines. Apigenin-7-O-β-glucoside (4) revealed the excellent activity on HeLa, HT29, A549, and MCF6 cancer cell lines with the values of (IC50, µM) 167.3, 196.8 181.1, and 203.5, respectively, compared standard compound, cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Demirtas I, Erenler R, Elmastas M, Goktasoglu A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem. 2013;136(1):34–40. https://doi.org/10.1016/j.foodchem.2012.07.086.

    Article  CAS  PubMed  Google Scholar 

  2. Sahin Yaglioglu A, Akdulum B, Erenler R, Demirtas I, Telci I, Tekin S. Antiproliferative activity of pentadeca-(8E, 13Z) dien-11-yn-2-one and (E)-1,8-pentadecadiene from Echinacea pallida (Nutt.) Nutt. roots. Med Chem Res. 2013;22(6):2946–53.

    Article  Google Scholar 

  3. Erenler R, Telci I, Ulutas M, Demirtas I, Gul F, Elmastas M, Kayir O. Chemical constituents, quantitative analysis and antioxidant activities of Echinacea purpurea (L.) Moench and Echinacea pallida (Nutt.) Nutt. J Food Biochem. 2015;39(5):622–30. https://doi.org/10.1111/jfbc.12168.

    Article  CAS  Google Scholar 

  4. Elmastas M, Erenler R, Isnac B, Aksit H, Sen O, Genc N, Demirtas I. Isolation and identification of a new neo-clerodane diterpenoid from Teucrium chamaedrys L. Nat Prod Res. 2016;30(3):299–304. https://doi.org/10.1080/14786419.2015.1057583.

    Article  CAS  PubMed  Google Scholar 

  5. Topçu G, Erenler R, Çakmak O, Johansson CB, Çelik C, Chai H-B, Pezzuto JM. Diterpenes from the berries of Juniperus excelsa. Phytochemistry. 1999;50(7):1195–9. https://doi.org/10.1016/S0031-9422(98)00675-X.

    Article  PubMed  Google Scholar 

  6. Gülçin İ, Topal F, Sarikaya SBÖ, Bursal E, Bilsel G, Gören AC. Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L. Rec Nat Prod. 2011;5(3):158.

    Google Scholar 

  7. Köksal E, Gülçin İ. Antioxidant activity of cauliflower (Brassica oleracea L.). Turk J Agricul Forest. 2008;32(1):65–78.

    Google Scholar 

  8. Elmastas M, Celik SM, Genc N, Aksit H, Erenler R, Gulcin İ. Antioxidant activity of an anatolian herbal tea—Origanum minutiflorum: isolation and characterization of its secondary metabolites. Int J Food Prop. 2018;21(1):374–84. https://doi.org/10.1080/10942912.2017.1416399.

    Article  CAS  Google Scholar 

  9. Binzet R. Onosma anatolica, a new species of Boraginaceae from Turkey. PhytoKeys. 2016;69:39–49. https://doi.org/10.3897/phytokeys.69.8360.

    Article  Google Scholar 

  10. Davis PH, Mill RR, Tan K. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburg University Press; 1988.

    Google Scholar 

  11. Koyuncu O, Yaylacı ÖK, Özgişi K, Sezer O, Öztürk D. A new Onosma (Boraginaceae) species from central Anatolia, Turkey. Plant Syst Evol. 2013;299(10):1839–47. https://doi.org/10.1007/s00606-013-0839-1.

    Article  Google Scholar 

  12. Kumar N, Kumar R, Kishore K. Onosma L.: a review of phytochemistry and ethnopharmacology. Pharmacogn Rev. 2013;7(14):140–51. https://doi.org/10.4103/0973-7847.120513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong M, Liu D, Li Y-H, Chen X-Q, Luo K, Zhang Y-M, Li R-T. Naphthoquinones from Onosma paniculatum with potential anti-inflammatory activity. Planta Med. 2017;83(07):631–5. https://doi.org/10.1055/s-0042-120545.

    Article  CAS  PubMed  Google Scholar 

  14. Nikita G, Vivek P, Chhaya G. Wound-healing activity of an oligomer of alkannin/shikonin, isolated from root bark of Onosma echioides. Nat Prod Res. 2015;29(16):1584–8. https://doi.org/10.1080/14786419.2014.986126.

    Article  CAS  PubMed  Google Scholar 

  15. Vukic MD, Vukovic NL, Djelic GT, Popovic SL, Zaric MM, Baskic DD, Krstic GB, Tesevic VV, Kacaniova MM. Antibacterial and cytotoxic activities of naphthoquinone pigments from Onosma visianii Clem. EXCLI J. 2017;16:73–88. https://doi.org/10.17179/excli2016-762.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sut S, Pavela R, Kolarčik V, Cappellacci L, Petrelli R, Maggi F, Dall’Acqua S, Benelli G. Identification of Onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules. 2017;22(6):1002–16. https://doi.org/10.3390/molecules22061002.

    Article  CAS  PubMed Central  Google Scholar 

  17. Yildirim AB, Karakas FP, Turker AU. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pac J Trop Med. 2013;6(8):616–24. https://doi.org/10.1016/S1995-7645(13)60106-6.

    Article  PubMed  Google Scholar 

  18. Kretschmer N, Rinner B, Deutsch AJ, Lohberger B, Knausz H, Kunert O, Blunder M, Boechzelt H, Schaider H, Bauer R. Naphthoquinones from Onosma paniculata induce cell-cycle arrest and apoptosis in melanoma cells. J Nat Prod. 2012;75(5):865–9. https://doi.org/10.1021/np2006499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar N, Gupta A, Prakash D, Kumar P. Hypoglycemic activity of Onosma hispidum (Ratanjot). Int J Diabetes Dev Ctries. 2010;30(4):213–6. https://doi.org/10.4103/0973-3930.70862.

    Article  Google Scholar 

  20. Ahmad B, Ali N, Bashir S, Choudhary M, Azam S, Khan I. Parasiticidal, antifungal and antibacterial activities of Onosma griffithii Vatke. Afr J Biotechnol. 2009;8(19):5084–7.

    Google Scholar 

  21. Di Giorgio C, Delmas F, Tueni M, Cheble E, Khalil T, Balansard G. Alternative and complementary antileishmanial treatments: assessment of the antileishmanial activity of 27 lebanese plants, including 11 endemic species. J Altern Complement Med. 2008;14(2):157–62. https://doi.org/10.1089/acm.2007.7041.

    Article  PubMed  Google Scholar 

  22. Kocyigit UM, Budak Y, Gürdere MB, Tekin Ş, Köprülü TK, Ertürk F, Özcan K, Gülçin İ, Ceylan M. Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR, 4S, 7R, 7aS)-2-(4-((E)-3-(3-aryl) acryloyl) phenyl)-3a, 4, 7, 7a-tetrahydro-1H-4, 7-methanoisoindole-1, 3 (2H)-dione derivatives. Bioorg Chem. 2017;70:118–25. https://doi.org/10.1016/j.bioorg.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  23. Kocyigit UM, Budak Y, Gürdere MB, Ertürk F, Yencilek B, Taslimi P, Gülçin İ, Ceylan M. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch Physiol Biochem. 2018;124(1):61–8. https://doi.org/10.1080/13813455.2017.1360914.

    Article  CAS  PubMed  Google Scholar 

  24. Acuña UM, Carcache PJB, Matthew S, de Blanco EJC. New acyclic bis phenylpropanoid and neolignans, from Myristica fragrans Houtt., exhibiting PARP-1 and NF-κB inhibitory effects. Food Chem. 2016;202:269–75. https://doi.org/10.1016/j.foodchem.2016.01.060.

    Article  CAS  PubMed Central  Google Scholar 

  25. Ökten S, Çakmak O, Erenler R, Yüce Ö, Tekin S. Simple and convenient preparation of novel 6,8-disubstituted quinoline derivatives and their promising anticancer activities. Turk J Chem. 2013;37(6):896–908. https://doi.org/10.3906/kim-1301-30.

    Article  CAS  Google Scholar 

  26. Aydin A, Erenler R, Yılmaz B, Tekin Ş. Antiproliferative effect of Cherry laurel. J Turk Chem Soc Sect A: Chem. 2016;3(3):217–28. https://doi.org/10.18596/jotcsa.21204.

    Article  CAS  Google Scholar 

  27. Erenler R, Sen O, Aksit H, Demirtas I, Yaglioglu AS, Elmastas M, Telci İ. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities. J Sci Food Agrc. 2016;96(3):822–36. https://doi.org/10.1002/jsfa.7155.

    Article  CAS  Google Scholar 

  28. Okten S, Erenler R, Koprulu TK, Tekin S. In vitro antiproliferative/cytotoxic activity of 2, 3′-biindole against various cancer cell lines. Turk J Biol. 2015;39(1):15–22. https://doi.org/10.3906/BIY-1402-60.

    Article  CAS  Google Scholar 

  29. Erenler R, Pabuccu K, Yaglioglu AS, Demirtas I, Gul F. Chemical constituents and antiproliferative effects of cultured Mougeotia nummuloides and Spirulina major against cancerous cell lines. Z Naturforsch C. 2016;71(3–4):87–92. https://doi.org/10.1515/znc-2016-0010.

    Article  CAS  PubMed  Google Scholar 

  30. Yildiz I, Sen O, Erenler R, Demirtas I, Behcet L. Bioactivity–guided isolation of flavonoids from Cynanchum acutum L. subsp. sibiricum (willd.) Rech. f. and investigation of their antiproliferative activity. Nat Prod Res. 2017;31(22):2629–33. https://doi.org/10.1080/14786419.2017.1289201.

    Article  CAS  PubMed  Google Scholar 

  31. Hawas UW, Abou El-Kassem LT, Shaher F, Al-Farawati R. In vitro inhibition of hepatitis C virus protease and antioxidant by flavonoid glycosides from the Saudi costal plant Sarcocornia fruticosa. Nat Prod Res. 2019;33(23):3364–71. https://doi.org/10.1080/14786419.2018.1477153.

    Article  CAS  PubMed  Google Scholar 

  32. Werner AK, Witte C-P. The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci. 2011;16(7):381–7. https://doi.org/10.1016/j.tplants.2011.03.012.

    Article  CAS  PubMed  Google Scholar 

  33. Becker LC, Bergfeld WF, Belsito DV, Klaassen CD, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Final report of the safety assessment of allantoin and its related complexes. Int J Toxicol. 2010;29(3_suppl):84S-97S. https://doi.org/10.1177/1091581810362805.

    Article  CAS  PubMed  Google Scholar 

  34. Alvarenga TA, Bêdo TR, Braguine CG, Gonçalves UO, Magalhães LG, Rodrigues V, Gimenez VM, Groppo M, Silva MLA, Cunha WR. Evaluation of Cuspidaria pulchra and its isolated compounds against Schistosoma Mansoni adult worms. Int J Biotechnol Wellness Ind. 2012;1(2):121–7. https://doi.org/10.6000/1927-3037/2012.01.02.03.

    Article  Google Scholar 

  35. Chiruvella KK, Mohammed A, Dampuri G, Ghanta RG, Raghavan SC. Phytochemical and antimicrobial studies of methyl angolensate and luteolin-7-O-glucoside isolated from callus cultures of Soymida febrifuga. Int J Biol Sci. 2007;3(4):269–78.

    CAS  Google Scholar 

  36. Erenler R, Yilmaz S, Aksit H, Sen O, Genc N, Elmastas M, Demirtas I. Antioxidant activities of chemical constituents isolated from Echinops orientalis Trauv. Rec Nat Prod. 2014;8(1):32–6.

    Google Scholar 

  37. Elkattan A, Gohar A, Amer M, Naeem ZM, Ashour A, Shimizu K. Melanin synthesis Inhibitors from Olea europeae. Rec Nat Prod. 2019;14(2):139–43.

    Article  Google Scholar 

  38. Aksit H, Çelik SM, Sen Ö, Erenler R, Demirtas I, Telci I, Elmastas M. Complete isolation and characterization of polar portion of Mentha dumetorum water extract. Rec Nat Prod. 2014;8(3):277–80.

    CAS  Google Scholar 

  39. Erenler R, Meral B, Sen O, Elmastas M, Aydin A, Eminagaoglu O, Topcu G. Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharm Biol. 2017;55(1):1646–53. https://doi.org/10.1080/13880209.2017.1310906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smiljkovic M, Stanisavljevic D, Stojkovic D, Petrovic I, Vicentic JM, Popovic J, Grdadolnik SG, Markovic D, Sankovic-Babice S, Glamoclija J. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J. 2017;16:795–807. https://doi.org/10.17179/excli2017-300.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Erenler R, Sen O, Yildiz I, Aydın A. Antiproliferative activities of chemical constituents isolated from Thymus praecox subsp. grossheimii (Ronniger) Jalas. Rec Nat Prod. 2016;10(6):766–70.

    CAS  Google Scholar 

  42. Park CM, Song Y-S. Luteolin and luteolin-7-O-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GalN/LPS-induced hepatitic ICR mice. Nutr Res Pract. 2019;13(6):473–9. https://doi.org/10.4162/nrp.2019.13.6.473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fernandes J, de Amorim GC, da Veiga TE, Cardoso J, Arruda AC, Arruda MSP, Castelo-Branco MT. Allantoin reduces cell death induced by cisplatin: possible implications for tumor lysis syndrome management. J Biol Inorg Chem. 2019;24(4):547–62. https://doi.org/10.1007/s00775-019-01661-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Tokat Gaziosmanpasa University, Scientific and Research Council (BAP, 2017-31).

Funding

Tokat Gaziosmanpasa University, Scientific and Research Council (BAP, 2017-31).

Author information

Authors and Affiliations

Authors

Contributions

Preparation of plant material and extraction were carried out by IY. Spectroscopic analysis was carried out by NG. Antiproliferative activity was executed by AA. The execution of the project, the coordination between the team members, and the writing of the article were carried out by RE.

Corresponding author

Correspondence to Ramazan Erenler.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This is an observational study. Tokat Gaziosmanpasa Research Ethics Committee has confirmed that no ethical approval is required.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erenler, R., Yildiz, I., Aydin, A. et al. Antiproliferative and cytotoxic effects of bioactive compounds isolated from Onosma bourgaei. Med Oncol 39, 116 (2022). https://doi.org/10.1007/s12032-022-01705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01705-z

Keywords

Navigation