Skip to main content

Advertisement

Log in

WAC, a novel GBM tumor suppressor, induces GBM cell apoptosis and promotes autophagy

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

WAC is closely related to the occurrence and development of tumors. However, its role in human glioblastoma (GBM) and its potential regulatory mechanisms have not been investigated. This study demonstrated that WAC is downregulated in GBM, and its low expression predicts a poor prognosis. We investigated the effect of WAC on the proliferation of glioma cells through a CCK-8 assay, EdU incorporation, and cell formation. The effects of WAC on apoptosis and autophagy in glioma were determined by flow cytometry, TUNEL detection, immunofluorescence, q-PCR, WB, and scanning electron microscopy. We found that overexpression of WAC inhibited the proliferation of glioma cells, promoted apoptosis, and induced autophagy. Therefore, WAC is likely to play a role as a new regulatory molecule in glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 1997;94(4):303–9. https://doi.org/10.1007/s004010050711.

    Article  CAS  PubMed  Google Scholar 

  3. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 2014;16(7):896–913. https://doi.org/10.1093/neuonc/nou087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ostrom QT, Gittleman H, Stetson L, Virk SM, Barnholtz-Sloan JS. Epidemiology of gliomas. Cancer Treat Res. 2015;163:1–14. https://doi.org/10.1007/978-3-319-12048-5_1.

    Article  PubMed  Google Scholar 

  5. Ito M, Minamiya Y, Kawai H, Saito S, Saito H, Nakagawa T, et al. Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol (Baltimore, Md: 1950). 2006;176(9):5637–43. https://doi.org/10.4049/jimmunol.176.9.5637.

    Article  CAS  Google Scholar 

  6. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24(1):24–41. https://doi.org/10.1038/cr.2013.168.

    Article  CAS  PubMed  Google Scholar 

  7. Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab. 2017;25(5):1037–43. https://doi.org/10.1016/j.cmet.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abdul Rahim SA, Dirkse A, Oudin A, Schuster A, Bohler J, Barthelemy V, et al. Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. Br J Cancer. 2017;117(6):813–25. https://doi.org/10.1038/bjc.2017.263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–62. https://doi.org/10.1056/NEJMra1205406.

    Article  CAS  PubMed  Google Scholar 

  10. Xu GM, Arnaout MA. WAC, a novel WW domain-containing adapter with a coiled-coil region, is colocalized with splicing factor SC35. Genomics. 2002;79(1):87–94. https://doi.org/10.1006/geno.2001.6684.

    Article  CAS  PubMed  Google Scholar 

  11. Hein C, Springael JY, Volland C, Haguenauer-Tsapis R, André B. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol. 1995;18(1):77–87. https://doi.org/10.1111/j.1365-2958.1995.mmi_18010077.x.

    Article  CAS  PubMed  Google Scholar 

  12. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J. 1996;15(10):2371–80.

    Article  CAS  Google Scholar 

  13. Maleszka R, Lupas A, Hanes SD, Miklos GL. The dodo gene family encodes a novel protein involved in signal transduction and protein folding. Gene. 1997;203(2):89–93. https://doi.org/10.1016/s0378-1119(97)00522-2.

    Article  CAS  PubMed  Google Scholar 

  14. Sudol M, Sliwa K, Russo T. Functions of WW domains in the nucleus. FEBS Lett. 2001;490(3):190–5. https://doi.org/10.1016/s0014-5793(01)02122-6.

    Article  CAS  PubMed  Google Scholar 

  15. Kao HY, Siliciano PG. Identification of Prp40, a novel essential yeast splicing factor associated with the U1 small nuclear ribonucleoprotein particle. Mol Cell Biol. 1996;16(3):960–7. https://doi.org/10.1128/mcb.16.3.960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang F, Yu X. WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell. 2011;41(4):384–97. https://doi.org/10.1016/j.molcel.2011.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9(6):400–14. https://doi.org/10.1038/nrc2657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. David-Morrison G, Xu Z, Rui YN, Charng WL, Jaiswal M, Yamamoto S, et al. WAC regulates mTOR activity by acting as an adaptor for the TTT and Pontin/Reptin complexes. Dev Cell. 2016;36(2):139–51. https://doi.org/10.1016/j.devcel.2015.12.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Joachim J, Jefferies HB, Razi M, Frith D, Snijders AP, Chakravarty P, et al. Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130. Mol Cell. 2015;60(6):899–913. https://doi.org/10.1016/j.molcel.2015.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52. https://doi.org/10.1038/nrm2239.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang X, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2016;375(2):263–73. https://doi.org/10.1016/j.canlet.2016.01.024.

    Article  CAS  PubMed  Google Scholar 

  22. Naldini L. Gene therapy returns to centre stage. Nature. 2015;526(7573):351–60. https://doi.org/10.1038/nature15818.

    Article  CAS  PubMed  Google Scholar 

  23. Klingler S, Guo B, Yao J, Yan H, Zhang L, Vaseva AV, et al. Development of resistance to EGFR-targeted therapy in malignant glioma can occur through EGFR-dependent and -independent mechanisms. Cancer Res. 2015;75(10):2109–19. https://doi.org/10.1158/0008-5472.Can-14-3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahn JH, Lee YW, Ahn SK, Lee M. Oncogenic BRAF inhibitor UAI-201 induces cell cycle arrest and autophagy in BRAF mutant glioma cells. Life Sci. 2014;104(1–2):38–46. https://doi.org/10.1016/j.lfs.2014.03.026.

    Article  CAS  PubMed  Google Scholar 

  25. Geraldo LHM, Garcia C, da Fonseca ACC, Dubois LGF, de Sampaio ESTCL, Matias D, et al. Glioblastoma therapy in the age of molecular medicine. Trends Cancer. 2019;5(1):46–65. https://doi.org/10.1016/j.trecan.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  26. Wang C, Zhao N, Zheng Q, Zhang D, Liu Y. BHLHE41 promotes U87 and U251 cell proliferation via ERK/cyclinD1 signaling pathway. Cancer Manage Res. 2019;11:7657–72. https://doi.org/10.2147/cmar.S214697.

    Article  CAS  Google Scholar 

  27. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science (New York, NY). 2004;305(5684):626–9. https://doi.org/10.1126/science.1099320.

    Article  CAS  Google Scholar 

  28. Gómez-Crisóstomo NP, López-Marure R, Zapata E, Zazueta C, Martínez-Abundis E. Bax induces cytochrome c release by multiple mechanisms in mitochondria from MCF7 cells. J Bioenerg Biomembr. 2013;45(5):441–8. https://doi.org/10.1007/s10863-013-9508-x.

    Article  CAS  PubMed  Google Scholar 

  29. Doherty J, Baehrecke EH. Life, death and autophagy. Nat Cell Biol. 2018;20(10):1110–7. https://doi.org/10.1038/s41556-018-0201-5.

    Article  CAS  PubMed  Google Scholar 

  30. Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ. 2019;26(4):605–16. https://doi.org/10.1038/s41418-018-0252-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the personnel in the department of neurosurgery and the central laboratory at the Renmin Hospital of Wuhan University.

Funding

No fundings.

Author information

Authors and Affiliations

Authors

Contributions

BL and DT designed the research. YW and SZ carried out all the experimental work. FY, QS, LZ, ZY wrote the paper; YL, RW collected and assembled data; PH and HJ analyzed the data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Daofeng Tian or Baohui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The following information was supplied related to ethical approvals (i.e., approving body and any reference numbers): Institutional Ethics Committee of the Faculty of Medicine at Renmin Hospital of Wuhan University approval (2012LKSZ (010) H) to carry out the study within its facilities.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12032_2021_1580_MOESM1_ESM.tif

Supplementary Fig. S1 WAC mRNA expression in different WHO grade according to TCGA, Gravendell and Rembrandt datasets. ns, no significance. ***P < 0.001. (TIF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, S., Sun, Q. et al. WAC, a novel GBM tumor suppressor, induces GBM cell apoptosis and promotes autophagy. Med Oncol 38, 132 (2021). https://doi.org/10.1007/s12032-021-01580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01580-0

Keywords

Navigation