Skip to main content

Advertisement

Log in

ceRNA network development and tumor-infiltrating immune cell analysis in hepatocellular carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is among the primary causes of cancer deaths globally. Despite efforts to understand liver cancer, its high morbidity and mortality remain high. Herein, we constructed two nomograms based on competing endogenous RNA (ceRNA) networks and invading immune cells to describe the molecular mechanisms along with the clinical prognosis of HCC patients. RNA maps of tumors and normal samples were downloaded from The Cancer Genome Atlas database. HTseq counts and fragments per megapons per thousand bases were read from 421 samples, including 371 tumor samples and 50 normal samples. We established a ceRNA network based on differential gene expression in normal versus tumor subjects. CIBERSORT was employed to differentiate 22 immune cell types according to tumor transcriptomes. Kaplan–Meier along with Cox proportional hazard analyses were employed to determine the prognosis-linked factors. Nomograms were constructed based on prognostic immune cells and ceRNAs. We employed Receiver operating characteristic (ROC) and calibration curve analyses to estimate these nomogram. The difference analysis found 2028 messenger RNAs (mRNAs), 128 micro RNAs (miRNAs), and 136 long non-coding RNAs (lncRNAs) to be significantly differentially expressed in tumor samples relative to normal samples. We set up a ceRNA network containing 21 protein-coding mRNAs, 12 miRNAs, and 3 lncRNAs. In Kaplan–Meier analysis, 21 of the 36 ceRNAs were considered significant. Of the 22 cell types, resting dendritic cell levels were markedly different in tumor samples versus normal controls. Calibration and ROC curve analysis of the ceRNA network, as well as immune infiltration of tumor showed restful accuracy (3-year survival area under curve (AUC): 0.691, 5-year survival AUC: 0.700; 3-year survival AUC: 0.674, 5-year survival AUC: 0.694). Our data suggest that Tregs, CD4 T cells, mast cells, SNHG1, HMMR and hsa-miR-421 are associated with HCC based on ceRNA immune cells co-expression patterns. On the basis of ceRNA network modeling and immune cell infiltration analysis, our study offers an effective bioinformatics strategy for studying HCC molecular mechanisms and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data were downloaded from The Cancer Genome Atlas (TCGA) database.

References

  1. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103:356–87.

    Article  CAS  PubMed  Google Scholar 

  2. Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology. 2019;156:477-491.e1.

    Article  PubMed  Google Scholar 

  3. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han J, Qu H, Han M, Ding Y, Xie M, Hu J, et al. MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer. Oncogene. 2020;40(4):833–47.

    Article  PubMed  Google Scholar 

  5. Li W, Lu H, Wang H, Ning X, Liu Q, Zhang H, et al. Circular RNA TGFBR2 acts as a ceRNA to suppress nasopharyngeal carcinoma progression by sponging miR-107. Cancer Lett. 2020;499:301–13.

    Article  PubMed  Google Scholar 

  6. Zhang L, Li C, Su X. Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J Exp Clin Cancer Res. 2020;39:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang M, Han Y, Zheng Y, Zhang Y, Zhao X, Gao Z, et al. ZEB1-activated LINC01123 accelerates the malignancy in lung adenocarcinoma through NOTCH signaling pathway. Cell Death Dis. 2020;11:981.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Shi M, Chen T, Zhang B. Characterization of the immune cell infiltration landscape in head and neck squamous cell carcinoma to aid immunotherapy. Mol Ther Nucleic Acids. 2020;22:298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li R, Qu H, Wang S, Wei J, Zhang L, Ma R, et al. GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC. Bioinformatics. 2018;34:2515–7.

    Article  CAS  PubMed  Google Scholar 

  11. Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20:185.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Menyhárt O, Nagy Á, Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R Soc Open Sci. 2018;5:181006.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

    Book  Google Scholar 

  17. Harrell FE Jr. 2020. rms: regression modeling strategies. Comprehensive R Archive Network (CRAN). https://CRAN.R-project.org/package=rms

  18. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw. 2011;39(5):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bolstad B. preprocessCore: a collection of pre-processing functions. Bioconductor; 2017. https://bioconductor.org/packages/preprocessCore.

  20. Kassambara A. survminer: drawing survival curves using “ggplot2”. R package survminer version 0.4.9. 2020.

  21. Blanche P, Dartigues J-F, Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med. 2013;32:5381–97.

    Article  PubMed  Google Scholar 

  22. Volders P-J, Helsens K, Wang X, Menten B, Martens L, Gevaert K, et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2013;41:D246-251.

    Article  CAS  PubMed  Google Scholar 

  23. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 2019;18:33.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen X, Chen Z, Yu S, Nie F, Yan S, Ma P, et al. Long noncoding RNA LINC01234 functions as a competing endogenous RNA to regulate CBFB expression by sponging miR-204-5p in gastric cancer. Clin Cancer Res. 2018;24:2002–14.

    Article  CAS  PubMed  Google Scholar 

  26. Bhatia V, Yadav A, Tiwari R, Nigam S, Goel S, Carskadon S, et al. Epigenetic silencing of miRNA-338-5p and miRNA-421 drives SPINK1-positive prostate cancer. Clin Cancer Res. 2019;25:2755–68.

    Article  CAS  PubMed  Google Scholar 

  27. Yin Y, Xu L, Chang Y, Zeng T, Chen X, Wang A, et al. N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway. Mol Cancer. 2019;18:11.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Connell M, Chen H, Jiang J, Kuan C-W, Fotovati A, Chu TL, et al. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. Elife. 2017;6:e28672.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rizzardi AE, Vogel RI, Koopmeiners JS, Forster CL, Marston LO, Rosener NK, et al. Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors. Cancer. 2014;120:1800–9.

    Article  CAS  PubMed  Google Scholar 

  30. Spranger S, Jeremias I, Wilde S, Leisegang M, Stärck L, Mosetter B, et al. TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood. 2012;119:3440–9.

    Article  CAS  PubMed  Google Scholar 

  31. Stevens LE, Cheung WKC, Adua SJ, Arnal-Estapé A, Zhao M, Liu Z, et al. Extracellular matrix receptor expression in subtypes of lung adenocarcinoma potentiates outgrowth of micrometastases. Cancer Res. 2017;77:1905–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tilghman J, Wu H, Sang Y, Shi X, Guerrero-Cazares H, Quinones-Hinojosa A, et al. HMMR maintains the stemness and tumorigenicity of glioblastoma stem-like cells. Cancer Res. 2014;74:3168–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, Ren L, Ding Y, Li F, Chen X, Ouyang Y, et al. Hyaluronan-mediated motility receptor confers resistance to chemotherapy via TGFβ/Smad2-induced epithelial-mesenchymal transition in gastric cancer. FASEB J. 2019;33:6365–77.

    Article  CAS  PubMed  Google Scholar 

  34. Zlobec I, Terracciano L, Tornillo L, Günthert U, Vuong T, Jass JR, et al. Role of RHAMM within the hierarchy of well-established prognostic factors in colorectal cancer. Gut. 2008;57:1413–9.

    Article  CAS  PubMed  Google Scholar 

  35. Cai Y, Sheng Z, Chen Y, Wang J. LncRNA HMMR-AS1 promotes proliferation and metastasis of lung adenocarcinoma by regulating MiR-138/sirt6 axis. Aging (Albany, NY). 2019;11:3041–54.

    Article  CAS  Google Scholar 

  36. Chu Z-P, Dai J, Jia L-G, Li J, Zhang Y, Zhang Z-Y, et al. Increased expression of long noncoding RNA HMMR-AS1 in epithelial ovarian cancer: an independent prognostic factor. Eur Rev Med Pharmacol Sci. 2018;22:8145–50.

    PubMed  Google Scholar 

  37. Li J, Ji X, Wang H. Targeting long noncoding RNA HMMR-AS1 suppresses and radiosensitizes glioblastoma. Neoplasia. 2018;20:456–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang D, Liu J, Xie T, Jiang Q, Ding L, Zhu J, et al. Oleate acid-stimulated HMMR expression by CEBPα is associated with nonalcoholic steatohepatitis and hepatocellular carcinoma. Int J Biol Sci. 2020;16:2812–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aalaei-Andabili SH, Alavian SM. Regulatory T cells are the most important determinant factor of hepatitis B infection prognosis: a systematic review and meta-analysis. Vaccine. 2012;30:5595–602.

    Article  CAS  PubMed  Google Scholar 

  41. Cany J, Tran L, Gauttier V, Judor J-P, Vassaux G, Ferry N, et al. Immunotherapy of hepatocellular carcinoma: is there a place for regulatory T-lymphocyte depletion? Immunotherapy. 2011;3:32–4.

    Article  CAS  PubMed  Google Scholar 

  42. Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, et al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology. 2014;59:567–79.

    Article  CAS  PubMed  Google Scholar 

  43. Li N, Zhu Q, Li Z, Han Q, Zhang G, Chen J, et al. IL17A gene polymorphisms, serum IL-17A and IgE levels, and hepatocellular carcinoma risk in patients with chronic hepatitis B virus infection. Mol Carcinog. 2014;53:447–57.

    Article  CAS  PubMed  Google Scholar 

  44. Tang X, Shu Z, Zhang W, Cheng L, Yu J, Zhang M, et al. Clinical significance of the immune cell landscape in hepatocellular carcinoma patients with different degrees of fibrosis. Ann Transl Med. 2019;7:528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to all the peer reviewers and editors for their opinions and suggestions.

Funding

This study was supported by the Jiangsu Medical Innovation Team (CXTDB2017006), and the Natural Science Foundation of Jiangsu Province (BK20190177). Funding source had no involvement in the financial support for the conduct of the research and preparation of the article.

Author information

Authors and Affiliations

Authors

Contributions

L.C. and C.N. conceived and designed the experiments; W.Z. performed the experiments; L.C., H.S. and L.Z. analyzed the data; Z.L. and L.C. contributed reagents and materials.

Corresponding authors

Correspondence to Zhi Li or Caifang Ni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The studies involving human participants were reviewed and approved by all data are from public database on the internet.

Consent to participate

All authors agree to submit articles for publication.

Consent for publication

All authors agree with publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zou, W., Zhang, L. et al. ceRNA network development and tumor-infiltrating immune cell analysis in hepatocellular carcinoma. Med Oncol 38, 85 (2021). https://doi.org/10.1007/s12032-021-01534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01534-6

Keywords

Navigation