Skip to main content

Advertisement

Log in

Biological activity and molecular docking studies of some new quinolines as potent anticancer agents

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the antiproliferative and cytotoxic properties and the action mechanism of substituted quinoline and tetrahydroquinolines 3, 4, 5, 7, and 8 against rat glioblastoma (C6), human cervical cancer (HeLa), human adenocarcinoma (HT29) cancer cell lines by BrdU Cell Proliferation ELISA, Lactate Dehydrogenase, DNA laddering and Topoisomerase I assays. The results of the study showed that 6,8-dibromotetrahydroquinoline 3 possess in vitro antiproliferative activity against C6, HeLa, and HT29 cell lines while morpholine/piperazine substituted quinoline 7 and 8 showed selective antiproliferative activity on C6 cell line with IC50 values 47.5 and 46.3 µg/mL, respectively. Moreover, 6,8-dibromoTHQ 3 caused DNA fragmentation while it did not inhibit the Topoisomerase I (Topo I) enzyme. On the other hand, compound 8 did not cause DNA laddering while 8 inhibited the Topo I enzyme. According to these results, 6,8-dibromoTHQ 3 stimulates apoptosis on the C6 cell line while 6,8-dibromo-3-morhonilylquinoline (8) inhibits the Topo I enzyme to cause antiproliferative activity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ökten S, Çakmak O, Tekin Ş. The SAR study of 6,8-disubstituted quinoline derivatives as anti cancer agents. Turk Clin Lab. 2017;8:152–9. https://doi.org/10.18663/tjcl.292058.

    Article  Google Scholar 

  2. Köprülü TK, Ökten S, Tekin Ş, Çakmak O. Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. J Biochem Mol Toxicol. 2019;33: e22260. https://doi.org/10.1002/jbt.22260.

    Article  CAS  PubMed  Google Scholar 

  3. Solomon VR, Lee H. Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem. 2011;18:1488–508. https://doi.org/10.2174/092986711795328382.

    Article  CAS  PubMed  Google Scholar 

  4. Ökten S. Synthesis of aryl substituted quinolines and tetrahydroquinolines through Suzuki-Miyaura coupling reactions. J Chem Res. 2019;43:274–80. https://doi.org/10.1177/1747519819861389.

    Article  CAS  Google Scholar 

  5. Ökten S, Aydın A, Koçyiğit ÜM, Çakmak O, Erkan S, Andac CA, Taslimi P, Gülçin İ. Quinoline-based promising anticancer and antibacterial agents, and some metabolic enzymes inhibitors. Arch Pharm. 2020;353: e2000086. https://doi.org/10.1002/ardp.202000086.

    Article  CAS  Google Scholar 

  6. Modapa S, Tusi Z, Sridhar D, Kumar A, Siddiqi MI, Srivastava K, Rizvi A, Tripathi R, Puri SK, Keshava GS, Shukla PK, Batra S. Search for new pharmacophores for antimalarial activity. Part I: synthesis and antimalarial activity of new 2-methyl-6-ureido-4-quinolinamides. Bioorg Med Chem. 2009;17:203–21. https://doi.org/10.1016/j.bmc.2008.11.021.

    Article  CAS  Google Scholar 

  7. Jin G, Li Z, Xiao F, Qi X, Sun X. Optimization of activity localization of quinoline derivatives: Design, synthesis, and dual evaluation of biological activity for potential antitumor and antibacterial agents. Bioorg Chem. 2020;99: 103837. https://doi.org/10.1016/j.bioorg.2020.103837.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar S, Bawa S, Drabu S, Panda BP. Design and synthesis of 2-chloroquinoline derivatives as non-azoles antimycotic agents. Med Chem Res. 2011;20:1340–8. https://doi.org/10.1007/s00044-010-9463-6.

    Article  CAS  Google Scholar 

  9. Guo LJ, Wei CX, Jia JH, Zhao LM, Quan ZS. Design and synthesis of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives with anticonvulsant activity. Eur J Med Chem. 2009;44:954–8. https://doi.org/10.1016/j.ejmech.2008.07.010.

    Article  CAS  PubMed  Google Scholar 

  10. Mukherjee S, Pal M. Medicinal chemistry of quinolines as emerging anti-inflammatory agents: an overview. Curr Med Chem. 2013;20:4386–410. https://doi.org/10.2174/09298673113209990170.

    Article  CAS  PubMed  Google Scholar 

  11. Hochegger P, Faist J, Seebacher W, Saf R, Maser P, Kaiser M, Weis R. Antiprotozoal activities of tetrazole-quinolines with aminopiperidine linker. Med Chem. 2019;15:409–16. https://doi.org/10.2174/1573406414666181015115101.

    Article  CAS  PubMed  Google Scholar 

  12. Çakmak O, Ökten S, Alımlı D, Ersanlı CC, Koçyiğit ÜM, Taslimi P. Novel piperazine and morpholine substituted quinolines: selective synthesis through activation of 3,6,8-tribromoquinoline, characterization and their some metabolic enzymes inhibition potentials. J Mol Struct. 2020;1220:1286662. https://doi.org/10.1016/j.molstruc.2020.128666.

    Article  CAS  Google Scholar 

  13. Guardia C, Stephens D, Dang H, Quijada M, Larionov O, Lleonart R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules. 2018;23:672–83. https://doi.org/10.3390/molecules23030672.

    Article  CAS  PubMed Central  Google Scholar 

  14. Ökten S, Çakmak O, Erenler R, Tekin Ş, Yüce Ö. Simple and convenient preparation of novel 6,8-disubstituted quinoline derivatives and their promising anticancer activities. Turk J Chem. 2013;37:896–908. https://doi.org/10.3906/kim-1301-30.

    Article  CAS  Google Scholar 

  15. Jain S, Chandra V, Jain PK, Pathak K, Pathak D, Vaidya A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab J Chem. 2019;12:4920–46. https://doi.org/10.1016/j.arabjc.2016.10.009.

    Article  CAS  Google Scholar 

  16. Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem. 2015;97:871–910. https://doi.org/10.1016/j.ejmech.2014.07.044.

    Article  CAS  PubMed  Google Scholar 

  17. Köprülü TK, Tekin, Ökten S, Çınar M, Duman S, Çakmak O. Detection of mechanism and anticancer activity of the new quinoline compounds MC20 and MC21. J Biotechnol. 2014;185:93. https://doi.org/10.1016/j.jbiotec.2014.07.318.

    Article  Google Scholar 

  18. Ökten S, Şahin ÖY, Tekin Ş, Çakmak O. In vitro antiproliferative/cytotoxic activity of novel quinoline compound SO-18 against various cancer cell lines. J Biotechnol. 2014;185:106. https://doi.org/10.1016/j.jbiotec.2014.07.359.

    Article  Google Scholar 

  19. Aydın A, Ökten S, Erkan S, Bulut M, Özcan E, Tutar A, Eren T. In vitro anticancer and antibacterial activities of brominated indenoquinoline amines supported with molecular docking and MCDM. ChemistrySelect. 2021;6:3286–95. https://doi.org/10.1002/slct.202004753.

    Article  Google Scholar 

  20. Arafa RK, Hegazy GH, Piazza GA, Abadi AH. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur J Med Chem. 2013;63:826–32. https://doi.org/10.1016/j.ejmech.2013.03.008.

    Article  CAS  PubMed  Google Scholar 

  21. Alqasoumi SI, Al-Taweel AM, Alafeefy AM, Hamed MM, Noaman E, Ghorab MM. Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg Med Chem Lett. 2009;19:6939–42. https://doi.org/10.1016/j.bmcl.2009.10.065.

    Article  CAS  PubMed  Google Scholar 

  22. Ghorab MM, Ragab FA, Heiba HI, Arafa RK, El-Hossary EM. In vitro anticancer screening and radiosensitizing evaluation of some new quinolines and pyrimido[4,5-b]quinolines bearing a sulfonamide moiety. Eur J Med Chem. 2010;45:3677–84. https://doi.org/10.1016/j.ejmech.2010.05.014.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Ai J, Wang Y, Chen Y, Wang L, Liu G, Geng M, Zhang A. Synthesis and c-Met kinase inhibition of 3,5-disubstituted and 3,5,7-trisubstituted quinolines: Identification of 3-(4-acetylpiperazin-1-yl)-5-(3-nitrobenzylamino)-7- (trifluoromethyl)quinoline as a novel anticancer agent. J Med Chem. 2011;54:2127–42. https://doi.org/10.1021/jm101340q.

    Article  CAS  PubMed  Google Scholar 

  24. Ghorab MM, Ragab FA, Heiba HI, Ghorab WM. Design and synthesis of some novel quinoline derivatives as anticancer and radiosensitizing agents targeting VEGFR tyrosine kinase. J Heterocycl Chem. 2011;48:1269–79. https://doi.org/10.1002/jhet.749.

    Article  CAS  Google Scholar 

  25. Tseng C, Chen Y, Chung K, Wang C, Peng S, Cheng C, Tzeng C. Synthesis and antiproliferative evaluation of 2,3-diarylquinoline derivatives. Org Biomol Chem. 2011;9:3205–16. https://doi.org/10.1039/c0ob01225d.

    Article  CAS  PubMed  Google Scholar 

  26. Ökten S, Çakmak O, Tekin Ş, Köprülü TK. A SAR Study: Evaluation of bromo derivatives of 8-substituted quinolines as novel anticancer agents. Lett Drug Des Discov. 2017;14(12):1415–24. https://doi.org/10.2174/1570180814666170504150050.

    Article  CAS  Google Scholar 

  27. Hyatt JL, Tsurkan L, Morton CL, Yoon KJ, Harel M, Brumshtein B, Silman I, Sussman JL, Wadkins RM, Potter PM. Inhibition of acetylcholinesterase by the anticancer prodrug CPT-11. Chem Biol Interact. 2005;157–158:247–52. https://doi.org/10.1016/j.cbi.2005.10.033.

    Article  CAS  PubMed  Google Scholar 

  28. Atsumi S, Nosaka C, Ochi Y, Iinuma H, Umezawa K. Inhibition of experimental metastasis by an alpha-glucosidase inhibitor, 1,6-epi-cyclophellitol. Cancer Res. 1993;53(20):4896–9.

    CAS  PubMed  Google Scholar 

  29. Bernacki RJ, Niedhala MJ, Korytnyk W. Glycosidases in cancer and invasion. Cancer Metastasis Rev. 1985;4(1):81–101. https://doi.org/10.1007/BF00047738.

    Article  CAS  PubMed  Google Scholar 

  30. Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin Ther Pat. 2000;10(5):575–600. https://doi.org/10.1517/13543776.10.5.575.

    Article  CAS  Google Scholar 

  31. Thiry A, Dogné JM, Masereel B, Supuran CT. Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol Sci. 2006;27(11):566–73. https://doi.org/10.1016/j.tips.2006.09.002.

    Article  CAS  PubMed  Google Scholar 

  32. Singh S, Lomelino CL, Mboge MY, Frost SC, McKenna R. Cancer drug development of carbonic anhydrase ınhibitors beyond the active site. Molecules. 2018;23(5):1045. https://doi.org/10.3390/molecules23051045.

    Article  CAS  PubMed Central  Google Scholar 

  33. Supuran CT. Therapeutic applications of the carbonic anhydrase inhibitors. Therapy. 2007;4(3):355–78. https://doi.org/10.2217/14750708.4.3.355.

    Article  CAS  Google Scholar 

  34. Şahin A, Çakmak O, Demirtaş I, Ökten S, Tutar A. Efficent and selective synthesis of quinoline derivatives. Tetrahedron. 2008;64:10068–74. https://doi.org/10.1016/j.tet.2008.08.018.

    Article  CAS  Google Scholar 

  35. Çakmak O, Ökten S, Alımlı D, Saddiqa A, Ersanlı CC. Activation of 6-bromoquinoline by nitration: synthesis of morpholinyl and piperazinyl quinolines. ARKIVOC. 2018;3:362–74.

    Google Scholar 

  36. Gong J, Traganos F, Darzynkiewicz Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem. 1994;218:314–9. https://doi.org/10.1006/abio.1994.1184.

    Article  CAS  PubMed  Google Scholar 

  37. Ökten S, Erenler R, Köprülü TK, Tekin Ş. In vitro antiproliferative/cytotoxic activity of 2,3’-biindole against various cancer cell lines. Turk J Biol. 2015;39:15–22. https://doi.org/10.3906/biy-1402-60.

    Article  CAS  Google Scholar 

  38. Stewart JJ. Application of the PM6 method to modeling the solid state. J Mol Model. 2008;14:499–535. https://doi.org/10.1007/s00894-008-0299-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kong J, White CA, Krylov AI, Sherrill CD, Adamson RD, Furlani TR, Lee MS, Lee AM, Gwaltney SR, Adams TR, Ochsenfeld C, Gilbert ATB, Kedziora GS, Rassolov VA, Maurice DR, Nair N, Shao Y, Besley NA, Maslen PE, Dombroski JP, Daschel H, Zhang W, Korambath PP, Baker J, Byrd EFC, Voorhis TV, Oumi M, Hirata S, Hsu CP, Ishikawa N, Florian J, Warshel A, Johnson BG, Gill PGM, Gordon, MH, Pople JA. Q-Chem 2.0: a high‐performance ab initio electronic structure program package. J Comput Chem. 2000;21:1532–48. https://doi.org/10.1002/1096-987X(200012)21:16<1532::AID-JCC10>3.0.CO;2-W.

    Article  CAS  Google Scholar 

  40. Stewart JJP. Application of the PM6 method to modeling proteins. J Mol Model. 2009;15:765. https://doi.org/10.1007/s00894-008-0420-y.

    Article  CAS  PubMed  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Suzerain GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 09 (now Gaussian 16). Wallingford (CT): Gaussian Inc.; 2016.

    Google Scholar 

  42. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ. Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov. 2010;5:597–607. https://doi.org/10.1517/17460441.2010.484460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forli S, Olson AJ. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J Med Chem. 2012;55:623–38. https://doi.org/10.1021/jm2005145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lattanzio R, Iezzi M, Sala G, Tinari N, Falasca M, Alberti S, Buglioni S, Mottolese M, Perracchio L, Natali PG, Piantelli M. PLC-gamma-1 phosphorylation status is prognostic of metastatic risk in patients with early-stage Luminal-A and -B breast cancer subtypes. BMC Cancer. 2019;19:747. https://doi.org/10.1186/s12885-019-5949-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sala G, Dituri F, Raimondi C, Previdi S, Maffucci T, Mazzoletti M, Rossi C, Iezzi M, Lattanzio R, Piantelli M, Iacobelli S, Broggini M, Falasca M. Phospholipase Cγ1 Is Required for Metastasis Development and Progression. Cancer Res. 2008;68:10187. https://doi.org/10.1158/0008-5472.CAN-08-1181.

    Article  CAS  PubMed  Google Scholar 

  46. Bunney TD, Esposito D, Mas-Droux C, Lamber E, Baxendale RW, Martins M, Cole A, Svergun D, Driscoll PC, Katan M. Structural and functional integration of the PLCγ interaction domains critical for regulatory mechanisms and signaling deregulation. Structure. 2012;20:2062–75. https://doi.org/10.1016/j.str.2012.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported financially by the Scientific and Technological Research Council of Turkey (TÜBİTAK; 112T394).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in research design and data collection. Köprülü and Ökten conducted data analysis and drafted manuscripts. Tekin and Çakmak revised the manuscript.

Corresponding authors

Correspondence to Tuğba Kul Köprülü or Salih Ökten.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köprülü, T.K., Ökten, S., Atalay, V.E. et al. Biological activity and molecular docking studies of some new quinolines as potent anticancer agents. Med Oncol 38, 84 (2021). https://doi.org/10.1007/s12032-021-01530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01530-w

Keywords

Navigation