Skip to main content

Advertisement

Log in

MicroRNAs and target molecules in bladder cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Bladder cancer (BC) is considered as one of the most common malignant tumors in humans with complex pathogenesis including gene expression variation, protein degradation, and changes in signaling pathways. Many studies on involved miRNAs in BC have demonstrated that they could be used as potential biomarkers in the prognosis, response to treatment, and screening before the cancerous phenotype onset. MicroRNAs (miRNAs) regulate many cellular processes through their different effects on special targets along with modifying signaling pathways, apoptosis, cell growth, and differentiation. The diverse expression of miRNAs in cancerous tissues could mediate procedures leading to the oncogenic or suppressor behavior of certain genes in cancer cells. Since a specific miRNA may have multiple targets, an mRNA could also be regulated by multiple miRNAs which further demonstrates the actual role of miRNAs in cancer. In addition, miRNAs can be utilized as biomarkers in some cancers that cannot be screened in the early stages. Hence, finding blood, urine, or tissue miRNA biomarkers by novel or routine gene expression method could be an essential step in the prognosis and control of cancer. In the present review, we have thoroughly evaluated the recent findings on different miRNAs in BC which can provide comprehensive information on better understanding the role of diverse miRNAs and better decision making regarding the new approaches in the diagnosis, prognosis, prevention, and treatment of BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhang Q, Miao S, Han X, Li C, Zhang M, Cui K, et al. MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting β-catenin and CDK2 and activating p21. Cell Death Dis. 2018;9(10):960.

    PubMed  PubMed Central  Google Scholar 

  2. Wu Z, Huang W, Wang X, Wang T, Chen Y, Chen B, et al. Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11. Mol Med. 2018;24(1):40.

    PubMed  PubMed Central  Google Scholar 

  3. Bi J, Liu H, Cai Z, Dong W, Jiang N, Yang M, et al. Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis. Aging (Albany NY). 2018;10(8):1964.

    CAS  Google Scholar 

  4. Lin Y-L, Xie P-G, Ma J-G. Aberrant methylation of CDH13 is a potential biomarker for predicting the recurrence and progression of non-muscle-invasive bladder cancer. Med Sci Monit Int Med J Exp Clin Res. 2014;20:1572.

    CAS  Google Scholar 

  5. Zhang L, Feng C, Zhou Y, Zhou Q. Dysregulated genes targeted by microRNAs and metabolic pathways in bladder cancer revealed by bioinformatics methods. Oncol Lett. 2018;15(6):9617–24.

    PubMed  PubMed Central  Google Scholar 

  6. Li X, Chen J, Hu X, Huang Y, Li Z, Zhou L, et al. Comparative mRNA and microRNA expression profiling of three genitourinary cancers reveals common hallmarks and cancer-specific molecular events. PLoS ONE. 2011;6(7):e22570.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo A-Y, Sun J, Jia P, Zhao Z. A novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC Syst Biol. 2010;4(1):10.

    PubMed  PubMed Central  Google Scholar 

  8. Wu K, He J, Pu W, Peng Y. The role of Exportin-5 in microRNA biogenesis and cancer. Genom Proteomics Bioinform. 2018;16(2):120–6.

    Google Scholar 

  9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    CAS  PubMed  Google Scholar 

  10. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    CAS  PubMed  Google Scholar 

  11. Moghaddam AS, Afshari JT, Esmaeili S-A, Saburi E, Joneidi Z, Momtazi-Borojeni AA. Cardioprotective microRNAs: lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis. 2019;285:1–9.

    CAS  PubMed  Google Scholar 

  12. Vahidi Z, Samadi M, Mahmoudi M, RezaieYazdi Z, Sahebari M, Tabasi N, et al. Lactobacillus rhamnosus and Lactobacillus delbrueckii ameliorate the expression of miR-155 and miR-181a in SLE patients. J Funct Foods. 2018;48:228–33.

    CAS  Google Scholar 

  13. Yu X, Li Z, Shen J, Wu WK, Liang J, Weng X, et al. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS ONE. 2013;8(12):e83080.

    PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Hu S, Zhang X, Wang L, Zhang X, Yan B, et al. MicroRNA-7 arrests cell cycle in G1 phase by directly targeting CCNE1 in human hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2014;443(3):1078–84.

    CAS  PubMed  Google Scholar 

  15. Huber RM, Rajski M, Sivasankaran B, Moncayo G, Hemmings BA, Merlo A. Deltex-1 activates mitotic signaling and proliferation and increases the clonogenic and invasive potential of U373 and LN18 glioblastoma cells and correlates with patient survival. PLoS ONE. 2013;8(2):e57793.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–16.

    CAS  PubMed  Google Scholar 

  17. Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15(5):563–8.

    CAS  PubMed  Google Scholar 

  18. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002;99(24):15524–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Si M, Zhu S, Wu H, Lu Z, Wu F, Mo Y. miR-21-mediated tumor growth. Oncogene. 2007;26(19):2799.

    CAS  PubMed  Google Scholar 

  20. Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, Hannon GJ. A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 2007;21(24):3238–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006;29(5):903–6.

    CAS  PubMed  Google Scholar 

  22. Li M-P, Hu Y-D, Hu X-L, Zhang Y-J, Yang Y-L, Jiang C, et al. MiRNAs and miRNA polymorphisms modify drug response. Int J Environ Res Public Health. 2016;13(11):1096.

    PubMed Central  Google Scholar 

  23. Kang W, Friedländer MR. Computational prediction of miRNA genes from small RNA sequencing data. Front Bioeng Biotechnol . 2015;3:7.

    PubMed  PubMed Central  Google Scholar 

  24. Schmidt MF. Drug target miRNAs: chances and challenges. Trends Biotechnol. 2014;32(11):578–85.

    CAS  PubMed  Google Scholar 

  25. Vincenzi B, Zoccoli A, Schiavon G, Iuliani M, Pantano F, Dell’Aquila E, et al. Dicer and Drosha expression and response to Bevacizumab-based therapy in advanced colorectal cancer patients. Eur J Cancer. 2013;49(6):1501–8.

    CAS  PubMed  Google Scholar 

  26. Maiti M, Nauwelaerts K, Herdewijn P. Pre-microRNA binding aminoglycosides and antitumor drugs as inhibitors of Dicer catalyzed microRNA processing. Bioorg Med Chem Lett. 2012;22(4):1709–11.

    CAS  PubMed  Google Scholar 

  27. Rukov JL, Wilentzik R, Jaffe I, Vinther J, Shomron N. Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform. 2014;15(4):648–59.

    CAS  PubMed  Google Scholar 

  28. Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, et al. SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics. 2013;29(3):409–11.

    CAS  PubMed  Google Scholar 

  29. Wu X-R. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer. 2005;5(9):713.

    CAS  PubMed  Google Scholar 

  30. Guancial EA, Bellmunt J, Yeh S, Rosenberg JE, Berman DM, editors. The evolving understanding of microRNA in bladder cancer. Urologic oncology: seminars and original investigations; 2014: Elsevier.

  31. Matullo G, Naccarati A, Pardini B. Micro RNA expression profiling in bladder cancer: the challenge of next-generation sequencing in tissues and biofluids. Int J Cancer. 2016;138(10):2334–45.

    CAS  PubMed  Google Scholar 

  32. Enokida H, Yoshino H, Matsushita R, Nakagawa M. The role of microRNAs in bladder cancer. Investig Clin Urol. 2016;57(Suppl 1):S60–76.

    PubMed  PubMed Central  Google Scholar 

  33. Yamasaki T, Yoshino H, Enokida H, Hidaka H, Chiyomaru T, Nohata N, et al. Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol. 2012;40(6):1821–30.

    CAS  PubMed  Google Scholar 

  34. Yu D, Zhang C, Gui J. RNA-binding protein HuR promotes bladder cancer progression by competitively binding to the long noncoding HOTAIR with miR-1. OncoTargets Ther. 2017;10:2609.

    Google Scholar 

  35. Dong Z, Zhang D, Wang S, Lin Z. Target inhibition on GSK-3β by miR-9 to modulate proliferation and apoptosis of bladder cancer cells. Eur Rev Med Pharmacol Sci. 2018;22(10):3018–26.

    PubMed  Google Scholar 

  36. Xie Y, Ma X, Chen L, Li H, Gu L, Gao Y, et al. MicroRNAs with prognostic significance in bladder cancer: a systematic review and meta-analysis. Sci Rep. 2017;7(1):1–12.

    Google Scholar 

  37. Smakman N, Schaap N, Snijckers CM, Rinkes IHB, Kranenburg O. NS-398, a selective cyclooxygenase-2 inhibitor, reduces experimental bladder carcinoma outgrowth by inhibiting tumor cell proliferation. Urology. 2005;66(2):434–40.

    PubMed  Google Scholar 

  38. Zuo W, Wang Z-Z, Xue J. Artesunate induces apoptosis of bladder cancer cells by miR-16 regulation of COX-2 expression. Int J Mol Sci. 2014;15(8):14298–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377–86.

    CAS  PubMed  Google Scholar 

  40. Yu G, Jia Z, Dou Z. miR-24-3p regulates bladder cancer cell proliferation, migration, invasion and autophagy by targeting DEDD. Oncol Rep. 2017;37(2):1123–31.

    CAS  PubMed  Google Scholar 

  41. Chen L, Long Y, Han Z, Yuan Z, Liu W, Yang F, et al. MicroRNA-101 inhibits cell migration and invasion in bladder cancer via targeting FZD4. Exp Therap Med. 2019;17(2):1476–85.

    CAS  Google Scholar 

  42. Lei Y, Li B, Tong S, Qi L, Hu X, Cui Y, et al. miR-101 suppresses vascular endothelial growth factor C that inhibits migration and invasion and enhances cisplatin chemosensitivity of bladder cancer cells. PLoS ONE. 2015;10(2):e0117809.

    PubMed  PubMed Central  Google Scholar 

  43. Bu Q, Fang Y, Cao Y, Chen Q, Liu Y. Enforced expression of miR-101 enhances cisplatin sensitivity in human bladder cancer cells by modulating the cyclooxygenase-2 pathway. Mol Med Rep. 2014;10(4):2203–9.

    CAS  PubMed  Google Scholar 

  44. Hu Z, Lin Y, Chen H, Mao Y, Wu J, Zhu Y, et al. MicroRNA-101 suppresses motility of bladder cancer cells by targeting c-Met. Biochem Biophys Res Commun. 2013;435(1):82–7.

    CAS  PubMed  Google Scholar 

  45. Zabolotneva AA, Zhavoronkov A, Garazha AV, Roumiantsev SA, Buzdin AA. Characteristic patterns of microRNA expression in human bladder cancer. Front Genet. 2013;3:310.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang H, Qi F, Cao Y, Chen M, Zu X. Down-regulated microRNA-101 in bladder transitional cell carcinoma is associated with poor prognosis. Med Sci Monitor Int Med J Exp Clin Res. 2014;20:812.

    CAS  Google Scholar 

  47. Friedman JM, Liang G, Liu C-C, Wolff EM, Tsai YC, Ye W, et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Can Res. 2009;69(6):2623–9.

    CAS  Google Scholar 

  48. Long Y, Wu Z, Yang X, Chen L, Han Z, Zhang Y, et al. MicroRNA-101 inhibits the proliferation and invasion of bladder cancer cells via targeting c-FOS. Mol Med Rep. 2016;14(3):2651–6.

    CAS  PubMed  Google Scholar 

  49. Dyrskjøt L, Ostenfeld MS, Bramsen JB, Silahtaroglu AN, Lamy P, Ramanathan R, et al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Can Res. 2009;69(11):4851–60.

    Google Scholar 

  50. Shen H, Blijlevens M, Yang N, Frangou C, Wilson KE, Xu B, et al. Sox4 expression confers bladder cancer stem cell properties and predicts for poor patient outcome. Int J Biol Sci. 2015;11(12):1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu W, Peng Y, Tobin DJ. A new 12-gene diagnostic biomarker signature of melanoma revealed by integrated microarray analysis. PeerJ. 2013;1:e49.

    PubMed  PubMed Central  Google Scholar 

  52. Kong C, Zhu Y, Liu D, Yu M, Li S, Li Z, et al. Role of protein kinase C-alpha in superficial bladder carcinoma recurrence. Urology. 2005;65(6):1228–32.

    PubMed  Google Scholar 

  53. Watanabe T, Shinohara N, Moriya K, Sazawa A, Kobayashi Y, Ogiso Y, et al. Significance of the Grb2 and son of sevenless (Sos) proteins in human bladder cancer cell lines. IUBMB Life. 2000;49(4):317–20.

    CAS  PubMed  Google Scholar 

  54. Jang IK, Cronshaw DG, Xie L-K, Fang G, Zhang J, Oh H, et al. Growth-factor receptor-bound protein-2 (Grb2) signaling in B cells controls lymphoid follicle organization and germinal center reaction. Proc Natl Acad Sci. 2011;108(19):7926–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Q, Lozano G. Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy. Clin Cancer Res. 2013;19(1):34–41.

    PubMed  Google Scholar 

  56. Veerla S, Lindgren D, Kvist A, Frigyesi A, Staaf J, Persson H, et al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer. 2009;124(9):2236–42.

    CAS  PubMed  Google Scholar 

  57. Fukuda T, Ochi H, Sunamura S, Haiden A, Bando W, Inose H, et al. MicroRNA-145 regulates osteoblastic differentiation by targeting the transcription factor Cbfb. FEBS Lett. 2015;589(21):3302–8.

    CAS  PubMed  Google Scholar 

  58. Ostenfeld MS, Bramsen JB, Lamy P, Villadsen SB, Fristrup N, Sørensen KD, et al. miR-145 induces caspase-dependent and-independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 2010;29(7):1073.

    CAS  PubMed  Google Scholar 

  59. Chiyomaru T, Enokida H, Tatarano S, Kawahara K, Uchida Y, Nishiyama K, et al. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer. 2010;102(5):883–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cui SY, Wang R, Chen LB. Micro RNA-145: a potent tumour suppressor that regulates multiple cellular pathways. J Cell Mol Med. 2014;18(10):1913–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Villadsen S, Bramsen JB, Ostenfeld M, Wiklund E, Fristrup N, Gao S, et al. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br J Cancer. 2012;106(2):366.

    CAS  PubMed  Google Scholar 

  62. Noguchi S, Yamada N, Kumazaki M, Yasui Y, Iwasaki J, Naito S, et al. socs7, a target gene of microRNA-145, regulates interferon-β induction through STAT3 nuclear translocation in bladder cancer cells. Cell Death Dis. 2013;4(2):e482-e.

    Google Scholar 

  63. Zhu Z, Xu T, Wang L, Wang X, Zhong S, Xu C, et al. MicroRNA-145 directly targets the insulin-like growth factor receptor I in human bladder cancer cells. FEBS Lett. 2014;588(17):3180–5.

    CAS  PubMed  Google Scholar 

  64. Minami K, Taniguchi K, Sugito N, Kuranaga Y, Inamoto T, Takahara K, et al. MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells. Oncotarget. 2017;8(20):33064.

    PubMed  PubMed Central  Google Scholar 

  65. Takai T, Yoshikawa Y, Inamoto T, Minami K, Taniguchi K, Sugito N, et al. A novel combination RNAi toward Warburg effect by replacement with miR-145 and silencing of PTBP1 induces apoptotic cell death in bladder cancer cells. Int J Mol Sci. 2017;18(1):179.

    PubMed Central  Google Scholar 

  66. Matsushita R, Yoshino H, Enokida H, Goto Y, Miyamoto K, Yonemori M, et al. Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness. Oncotarget. 2016;7(19):28460.

    PubMed  PubMed Central  Google Scholar 

  67. Zhang Q, Zhuang J, Deng Y, Yang L, Cao W, Chen W, et al. miR34a/GOLPH3 Axis abrogates urothelial bladder cancer chemoresistance via reduced cancer stemness. Theranostics. 2017;7(19):4777.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun H, Tian J, Xian W, Xie T, Yang X. miR-34a inhibits proliferation and invasion of bladder cancer cells by targeting orphan nuclear receptor HNF4G. Disease markers. 2015;2015.

  69. Zhang C, Yao Z, Zhu M, Ma X, Shi T, Li H, et al. Inhibitory effects of microRNA-34a on cell migration and invasion of invasive urothelial bladder carcinoma by targeting Notch1. J Huazhong Univ Sci Technol [Medical Sciences]. 2012;32(3):375–82.

    CAS  Google Scholar 

  70. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.

    CAS  PubMed  Google Scholar 

  71. Zhou X, Qi L, Tong S, Cui Y, Chen J, Huang T, et al. miR-128 downregulation promotes growth and metastasis of bladder cancer cells and involves VEGF-C upregulation. Oncol Lett. 2015;10(5):3183–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun D-K, Wang J-M, Zhang P, Wang Y-Q. MicroRNA-138 regulates metastatic potential of bladder cancer through ZEB2. Cell Physiol Biochem. 2015;37(6):2366–74.

    CAS  PubMed  Google Scholar 

  73. Yao K, He L, Gan Y, Zeng Q, Dai Y, Tan J. MiR-186 suppresses the growth and metastasis of bladder cancer by targeting NSBP1. Diagnostic pathology. 2015;10(1):146.

    PubMed  PubMed Central  Google Scholar 

  74. Wang J, Zhang X, Wang L, Yang Y, Dong Z, Wang H, et al. MicroRNA-214 suppresses oncogenesis and exerts impact on prognosis by targeting PDRG1 in bladder cancer. PLoS ONE. 2015;10(2):e0118086.

    PubMed  PubMed Central  Google Scholar 

  75. Xu D, Wang Q, An Y, Xu L. miR-203 regulates the proliferation, apoptosis and cell cycle progression of pancreatic cancer cells by targeting Survivin. Mol Med Rep. 2013;8(2):379–84.

    PubMed  Google Scholar 

  76. Zhang X, Zhang Y, Liu X, Fang A, Li P, Li Z, et al. MicroRNA-203 is a prognostic indicator in bladder cancer and enhances chemosensitivity to cisplatin via apoptosis by targeting Bcl-w and survivin. PLoS ONE. 2015;10(11):e0143441.

    PubMed  PubMed Central  Google Scholar 

  77. Shen J, Zhang J, Xiao M, Yang J, Zhang N. miR-203 suppresses bladder cancer cell growth and targets Twist1. Oncol Res Featur Preclin Clin Cancer Therapeut. 2018;26(8):1155–65.

    Google Scholar 

  78. Liu X, Liu X, Wu Y, Wu Q, Wang Q, Yang Z, et al. MicroRNAs in biofluids are novel tools for bladder cancer screening. Oncotarget. 2017;8(19):32370.

    PubMed  PubMed Central  Google Scholar 

  79. Netto GJ. Molecular biomarkers in urothelial carcinoma of the bladder: are we there yet? Nat Rev Urol. 2012;9(1):41.

    CAS  Google Scholar 

  80. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D et al., editors. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urologic oncology: seminars and original investigations; 2010: Elsevier.

  81. Dong F, Xu T, Shen Y, Zhong S, Chen S, Ding Q, et al. Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure. Oncotarget. 2017;8(16):27547.

    PubMed  PubMed Central  Google Scholar 

  82. Han Y, Chen J, Zhao X, Liang C, Wang Y, Sun L, et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS ONE. 2011;6(3):e18286.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yoshino H, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Nishiyama K, et al. The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br J Cancer. 2011;104(5):808.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li J, Qiu M, An Y, Huang J, Gong C. miR-7-5p acts as a tumor suppressor in bladder cancer by regulating the hedgehog pathway factor Gli3. Biochem Biophys Res Commun. 2018;503(3):2101–7.

    CAS  PubMed  Google Scholar 

  85. Xie D, Shang C, Zhang H, Guo Y, Tong X. Up-regulation of miR-9 target CBX7 to regulate invasion ability of bladder transitional cell carcinoma. Med Sci Monitor Int Med J Exp Clin Res. 2015;21:225.

    CAS  Google Scholar 

  86. Gulìa C, Baldassarra S, Signore F, Rigon G, Pizzuti V, Gaffi M, et al. Role of non-coding RNAs in the etiology of bladder cancer. Genes. 2017;8(11):339.

    PubMed Central  Google Scholar 

  87. Xiao H, Li H, Yu G, Xiao W, Hu J, Tang K, et al. MicroRNA-10b promotes migration and invasion through KLF4 and HOXD10 in human bladder cancer. Oncol Rep. 2014;31(4):1832–8.

    CAS  PubMed  Google Scholar 

  88. Eissa S, Matboli M, Hegazy MG, Kotb YM, Essawy NO. Evaluation of urinary microRNA panel in bladder cancer diagnosis: relation to bilharziasis. Translat Res. 2015;165(6):731–9.

    CAS  Google Scholar 

  89. Jiang Q-Q, Liu B, Yuan T. MicroRNA-16 inhibits bladder cancer proliferation by targeting Cyclin D1. Asian Pac J Cancer Prev. 2013;14(7):4127–30.

    PubMed  Google Scholar 

  90. Güllü Amuran G, Peker Eyuboglu I, Tinay I, Akkiprik M. New insights in bladder cancer diagnosis: urinary miRNAs and proteins. Med Sci . 2018;6(4):113.

    Google Scholar 

  91. Kent M, Zwingenberger A, Westropp J, Barrett L, Ghosh P, Vinall RL. MiRNA profiling of dogs with transitional cell carcinoma of the bladder using blood and urine samples. AACR; 2016.

  92. Zhou L, Li Z, Pan X, Lai Y, Quan J, Zhao L, et al. Identification of miR-18a-5p as an oncogene and prognostic biomarker in RCC. Am J Translat Res. 2018;10(6):1874.

    CAS  Google Scholar 

  93. Feng Y, Liu J, Kang Y, He Y, Liang B, Yang P, et al. miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. J Exp Clin Cancer Res. 2014;33(1):67.

    PubMed  PubMed Central  Google Scholar 

  94. Jiang X, Du L, Duan W, Wang R, Yan K, Wang L, et al. Serum microRNA expression signatures as novel noninvasive biomarkers for prediction and prognosis of muscle-invasive bladder cancer. Oncotarget. 2016;7(24):36733.

    PubMed  PubMed Central  Google Scholar 

  95. Huang X, Zhao H, Qian X, Qiu J. MiR-20a in cell-free urine as a potential diagnostic biomarker for non-muscle invasive bladder cancer: a Chinese population-based study. Int J Clin Exp Med. 2018;11:209–16.

    Google Scholar 

  96. Mitash N, Agnihotri S, Tiwari S, Agrawal V, Mandhani A. MicroRNA-21 could be a molecular marker to predict the recurrence of nonmuscle invasive bladder cancer. IJU J Urol Soc India. 2017;33(4):283.

    Google Scholar 

  97. De Long J, Sullivan TB, Humphrey J, Logvinenko T, Summerhayes KA, Kozinn S, et al. A non-invasive miRNA based assay to detect bladder cancer in cell-free urine. Am J Translat Res. 2015;7(11):2500.

    Google Scholar 

  98. Zhang HH, Qi F, Cao YH, Zu XB, Chen MF. Expression and clinical significance of microRNA-21, maspin and vascular endothelial growth factor-C in bladder cancer. Oncol Lett . 2015;10(4):2610–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Adam L, Wszolek MF, Liu C-G, Jing W, Diao L, Zien A et al., editors. Plasma microRNA profiles for bladder cancer detection. Urologic oncology: seminars and original investigations; 2013: Elsevier.

  100. Mengual L, Lozano JJ, Ingelmo-Torres M, Gazquez C, Ribal MJ, Alcaraz A. Using microRNA profiling in urine samples to develop a non-invasive test for bladder cancer. Int J Cancer. 2013;133(11):2631–41.

    CAS  PubMed  Google Scholar 

  101. Lin Y, Chen H, Hu Z, Mao Y, Xu X, Zhu Y, et al. miR-26a inhibits proliferation and motility in bladder cancer by targeting HMGA1. FEBS Lett. 2013;587(15):2467–73.

    CAS  PubMed  Google Scholar 

  102. Wang G, Zhang H, He H, Tong W, Wang B, Liao G, et al. Up-regulation of microRNA in bladder tumor tissue is not common. Int Urol Nephrol. 2010;42(1):95–102.

    PubMed  Google Scholar 

  103. Miyamoto K, Seki N, Matsushita R, Yonemori M, Yoshino H, Nakagawa M, et al. Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer. Br J Cancer. 2016;115(3):354.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tölle A, Jung M, Rabenhorst S, Kilic E, Jung K, Weikert S. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol Rep. 2013;30(4):1949–56.

    PubMed  Google Scholar 

  105. Chiyomaru T, Seki N, Inoguchi S, Ishihara T, Mataki H, Matsushita R, et al. Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer. Int J Oncol. 2015;46(2):487–96.

    CAS  PubMed  Google Scholar 

  106. Miah S, Dudziec E, Drayton R, Zlotta A, Morgan S, Rosario D, et al. An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br J Cancer. 2012;107(1):123.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chung Y-H, Li S-C, Kao Y-H, Luo H-L, Cheng Y-T, Lin P-R, et al. MiR-30a-5p inhibits epithelial-to-mesenchymal transition and upregulates expression of tight junction protein claudin-5 in human upper tract urothelial carcinoma cells. Int J Mol Sci. 2017;18(8):1826.

    PubMed Central  Google Scholar 

  108. Jiang X, Du L, Wang L, Li J, Liu Y, Zheng G, et al. Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer. Int J Cancer. 2015;136(4):854–62.

    CAS  PubMed  Google Scholar 

  109. Xu T, Qin L, Zhu Z, Wang X, Liu Y, Fan Y, et al. MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in urothelial bladder cancer by targeting integrin α5. Oncotarget. 2016;7(19):27445.

    PubMed  PubMed Central  Google Scholar 

  110. Tian Z, Cao S, Li C, Xu M, Wei H, Yang H, et al. LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/CDK1. J Cell Physiol. 2019;234(4):4799–811.

    CAS  PubMed  Google Scholar 

  111. Wang W, Li T, Han G, Li Y, Shi L-H, Li H. Expression and role of miR-34a in bladder cancer. 2013.

  112. Liu J, Wang H, Wang Y, Li Z, Pan Y, Liu Q, et al. Repression of the miR-93-enhanced sensitivity of bladder carcinoma to chemotherapy involves the regulation of LASS2. OncoTargets Ther. 2016;9:1813.

    Google Scholar 

  113. He C, Zhang Q, Gu R, Lou Y, Liu W. miR-96 regulates migration and invasion of bladder cancer through epithelial-mesenchymal transition in response to transforming growth factor-β1. J Cell Biochem. 2018;119(9):7807–17.

    CAS  PubMed  Google Scholar 

  114. Guo Y, Liu H, Zhang H, Shang C, Song Y. miR-96 regulates FOXO1-mediated cell apoptosis in bladder cancer. Oncol Lett. 2012;4(3):561–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu Z, Liu K, Wang Y, Xu Z, Meng J, Gu S. Upregulation of microRNA-96 and its oncogenic functions by targeting CDKN1A in bladder cancer. Cancer Cell Int. 2015;15(1):107.

    PubMed  PubMed Central  Google Scholar 

  116. Zhang D-Z, Lau K-M, Chan ES, Wang G, Szeto C-C, Wong K, et al. Cell-free urinary microRNA-99a and microRNA-125b are diagnostic markers for the non-invasive screening of bladder cancer. PLoS ONE. 2014;9(7):e100793.

    PubMed  PubMed Central  Google Scholar 

  117. Motawi TK, Rizk SM, Ibrahim TM, Ibrahim IAR. Circulating microRNAs, miR-92a, miR-100 and miR-143, as non-invasive biomarkers for bladder cancer diagnosis. Cell Biochem Funct. 2016;34(3):142–8.

    CAS  PubMed  Google Scholar 

  118. Wang Y, Xing Q-F, Liu X-Q, Guo Z-J, Li C-Y, Sun G. MiR-122 targets VEGFC in bladder cancer to inhibit tumor growth and angiogenesis. Am J Translat Res. 2016;8(7):3056.

    CAS  Google Scholar 

  119. Zhou W, He L, Dai Y, Zhang Y, Wang J, Liu B. MicroRNA-124 inhibits cell proliferation, invasion and migration by targeting CAV1 in bladder cancer. Exp Ther Med. 2018;16(4):2811–20.

    PubMed  PubMed Central  Google Scholar 

  120. Zhang T, Wang J, Zhai X, Li H, Li C, Chang J. MiR-124 retards bladder cancer growth by directly targeting CDK4. Acta Biochim Biophys Sin. 2014;46(12):1072–9.

    CAS  PubMed  Google Scholar 

  121. Snowdon J, Boag S, Feilotter H, Izard J, Siemens DR. A pilot study of urinary microRNA as a biomarker for urothelial cancer. Can Urol Assoc J. 2013;7(1–2):28.

    PubMed  PubMed Central  Google Scholar 

  122. Zhang Y, Zhang D, Lv J, Wang S, Zhang Q. MiR-125a-5p suppresses bladder cancer progression through targeting FUT4. Biomed Pharmacother. 2018;108:1039–47.

    CAS  PubMed  Google Scholar 

  123. Huang L, Luo J, Cai Q, Pan Q, Zeng H, Guo Z, et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer. 2011;128(8):1758–69.

    CAS  PubMed  Google Scholar 

  124. Jia A, Castillo-Martin M, Bonal D, Sánchez-Carbayo M, Silva J, Cordon-Cardo C. MicroRNA-126 inhibits invasion in bladder cancer via regulation of ADAM9. Br J Cancer. 2014;110(12):2945.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mao XP, Zhang LS, Huang B, Zhou SY, Liao J, Chen LW, et al. Mir-135a enhances cellular proliferation through post-transcriptionally regulating PHLPP2 and FOXO1 in human bladder cancer. J Translat Med. 2015;13(1):86.

    Google Scholar 

  126. Wang G, Chan ES-Y, Kwan BC-H, Li PK-T, Yip SK-H, Szeto C-C et al. Expression of microRNAs in the urine of patients with bladder cancer. Clin Genitourinary Cancer. 2012;10(2):106–13.

  127. Mahdavinezhad A, Mousavi-Bahar SH, Poorolajal J, Yadegarazari R, Jafari M, Shabab N, et al. Evaluation of miR-141, miR-200c, miR-30b expression and clinicopathological features of bladder cancer. Int J Mol Cell Med. 2015;4(1):32.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang H, Li Q, Niu X, Wang G, Zheng S, Fu G, et al. miR-143 inhibits bladder cancer cell proliferation and enhances their sensitivity to gemcitabine by repressing IGF-1R signaling. Oncol Lett. 2017;13(1):435–40.

    CAS  PubMed  Google Scholar 

  129. Kou B, Gao Y, Du C, Shi Q, Xu S, Wang C-Q et al., editors. miR-145 inhibits invasion of bladder cancer cells by targeting PAK1. Urologic oncology: seminars and original investigations; 2014: Elsevier.

  130. Yun SJ, Jeong P, Kim W-T, Kim TH, Lee Y-S, Song PH, et al. Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer. Int J Oncol. 2012;41(5):1871–8.

    CAS  PubMed  Google Scholar 

  131. Zhang H, Qi D, Li J, Peng T, Yang L, Yuan J, et al. A novel regulatory circuit of miR-152 and DNMT1 in human bladder cancer. Oncol Rep. 2018;40(3):1803–12.

    CAS  PubMed  Google Scholar 

  132. Wei S, Bing Z, Yao Y, Master SR, Gupta P. Higher expression of miR-182 in cytology specimens of high-grade urothelial cell carcinoma: a potential diagnostic marker. Acta Cytol. 2015;59(1):109–12.

    CAS  PubMed  Google Scholar 

  133. Gao J-M, Huang L-Z, Huang Z-G, He R-Q. Clinical value and potential pathways of miR-183-5p in bladder cancer: a study based on miRNA-seq data and bioinformatics analysis. Oncol Lett. 2018;15(4):5056–70.

    PubMed  PubMed Central  Google Scholar 

  134. Xu H, Chen H, Zhang Q, Zhang X, Wang J. Significance of microRNA-183 family expression in cancer diagnosis: a meta-analysis. Int J Clin Exp Med. 2016;9(8):15296–305.

    CAS  Google Scholar 

  135. Zhao C, Qi L, Chen M, Liu L, Yan W, Tong S, et al. microRNA-195 inhibits cell proliferation in bladder cancer via inhibition of cell division control protein 42 homolog/signal transducer and activator of transcription-3 signaling. Exp Ther Med. 2015;10(3):1103–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Thomas I, Hwang S, Lin J-F, Lin Y-C, Chen H-E, Chou K-Y, et al. miR-204 acts as a tumor suppressor in human bladder cancer cell T24 by targeting antiapoptotic BCL2. Urol Sci. 2016;27(2):101–8.

    Google Scholar 

  137. Yang Y, Qu A, Liu J, Wang R, Liu Y, Li G, et al. Serum miR-210 contributes to tumor detection, stage prediction and dynamic surveillance in patients with bladder cancer. PLoS ONE. 2015;10(8):e0135168.

    PubMed  PubMed Central  Google Scholar 

  138. Wang J, Zhang X, Wang L, Dong Z, Du L, Yang Y, et al. Downregulation of urinary cell-free microRNA-214 as a diagnostic and prognostic biomarker in bladder cancer. J Surg Oncol. 2015;111(8):992–9.

    CAS  PubMed  Google Scholar 

  139. Cheng Y, Yang X, Deng X, Zhang X, Li P, Tao J, et al. MicroRNA-218 inhibits bladder cancer cell proliferation, migration, and invasion by targeting BMI-1. Tumor Biol. 2015;36(10):8015–23.

    CAS  Google Scholar 

  140. Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H et al. miR-218 on the genomic loss region of chromosome 4p15. 31 functions as a tumor suppressor in bladder cancer. Int J Oncol. 2011;39(1):13–21.

  141. Li P, Yang X, Cheng Y, Zhang X, Yang C, Deng X, et al. MicroRNA-218 increases the sensitivity of bladder cancer to cisplatin by targeting Glut1. Cell Physiol Biochem. 2017;41(3):921–32.

    CAS  PubMed  Google Scholar 

  142. Shang C, Zhang H, Guo Y, Hong Y, Liu Y, Xue Y. MiR-320a down-regulation mediates bladder carcinoma invasion by targeting ITGB3. Mol Biol Rep. 2014;41(4):2521–7.

    CAS  PubMed  Google Scholar 

  143. Yamane K, Naito H, Wakabayashi T, Yoshida H, Muramatsu F, Iba T, et al. Regulation of SLD5 gene expression by miR-370 during acute growth of cancer cells. Sci Rep. 2016;6:30941.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Wu C-T, Lin W-Y, Chang Y-H, Lin P-Y, Chen W-C, Chen M-F. DNMT1-dependent suppression of microRNA424 regulates tumor progression in human bladder cancer. Oncotarget. 2015;6(27):24119.

    PubMed  PubMed Central  Google Scholar 

  145. Zeng T, Peng L, Chao C, Fu B, Wang G, Wang Y, et al. miR-451 inhibits invasion and proliferation of bladder cancer by regulating EMT. Int J Clin Exp Pathol. 2014;7(11):7653.

    PubMed  PubMed Central  Google Scholar 

  146. Du M, Shi D, Yuan L, Li P, Chu H, Qin C, et al. Circulating miR-497 and miR-663b in plasma are potential novel biomarkers for bladder cancer. Sci Rep. 2015;5:10437.

    PubMed  PubMed Central  Google Scholar 

  147. Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H, et al. Novel oncogenic function of mesoderm development candidate 1 and its regulation by MiR-574-3p in bladder cancer cell lines. Int J Oncol. 2012;40(4):951–9.

    CAS  PubMed  Google Scholar 

  148. Li W, Liu J, Zou D, Cai X, Wang J, Wang J, et al. Exploration of bladder cancer molecular mechanisms based on miRNA-mRNA regulatory network. Oncol Rep. 2017;37(3):1461–8.

    CAS  PubMed  Google Scholar 

  149. Pignot G, Cizeron-Clairac G, Vacher S, Susini A, Tozlu S, Vieillefond A, et al. microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int J Cancer. 2013;132(11):2479–91.

    CAS  PubMed  Google Scholar 

  150. Yang X, Cheng Y, Li P, Tao J, Deng X, Zhang X, et al. A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis. Tumor Biol. 2015;36(1):383–91.

    CAS  Google Scholar 

  151. Zhao X, He W, Li J, Huang S, Wan X, Luo H, et al. MiRNA-125b inhibits proliferation and migration by targeting SphK1 in bladder cancer. Am J Translat Res. 2015;7(11):2346.

    CAS  Google Scholar 

  152. Zhao X, Li J, Huang S, Wan X, Luo H, Wu D. MiRNA-29c regulates cell growth and invasion by targeting CDK6 in bladder cancer. Am J Translat Res. 2015;7(8):1382.

    CAS  Google Scholar 

  153. Egawa H, Jingushi K, Hirono T, Ueda Y, Kitae K, Nakata W, et al. The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci Rep. 2016;6:20574.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Cheng Y, Zhang X, Li P, Yang C, Tang J, Deng X, et al. MiR-200c promotes bladder cancer cell migration and invasion by directly targeting RECK. OncoTargets Ther . 2016;9:5091.

    CAS  Google Scholar 

  155. Feng C, Sun P, Hu J, Feng H, Li M, Liu G, et al. miRNA-556-3p promotes human bladder cancer proliferation, migration and invasion by negatively regulating DAB2IP expression. Int J Oncol. 2017;50(6):2101–12.

    CAS  PubMed  Google Scholar 

  156. Xu X, Li S, Lin Y, Chen H, Hu Z, Mao Y, et al. MicroRNA-124-3p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1. J Translat Med. 2013;11(1):276.

    Google Scholar 

  157. Wang X, Wu Q, Xu B, Wang P, Fan W, Cai Y, et al. miR-124 exerts tumor suppressive functions on the cell proliferation, motility and angiogenesis of bladder cancer by fine-tuning UHRF 1. FEBS J. 2015;282(22):4376–88.

    CAS  PubMed  Google Scholar 

  158. Xu X, Chen H, Lin Y, Hu Z, Mao Y, Wu J, et al. MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met. Mol Cells. 2013;36(1):62–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Lei Y, Hu X, Li B, Peng M, Tong S, Zu X, et al. miR-150 modulates cisplatin chemosensitivity and invasiveness of muscle-invasive bladder cancer cells via targeting PDCD4 in vitro. Med Sci Monitor Int Med J Exp Clin Res. 2014;20:1850.

    CAS  Google Scholar 

  160. Zhang D-Q, Zhou C-K, Jiang X-W, Chen J, Shi B-K. Increased expression of miR-222 is associated with poor prognosis in bladder cancer. World J Surg Oncol. 2014;12(1):241.

    PubMed  PubMed Central  Google Scholar 

  161. Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K et al., editors. MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urologic oncology: seminars and original investigations; 2013: Elsevier.

  162. Chen C-L, Chung T, Wu C-C, Ng K-F, Yu J-S, Tsai C-H, et al. Comparative tissue proteomics of microdissected specimens reveals novel candidate biomarkers of bladder cancer. Mol Cell Proteomics. 2015;14(9):2466–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Catto JW, Alcaraz A, Bjartell AS, White RDV, Evans CP, Fussel S, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol. 2011;59(5):671–81.

    CAS  PubMed  Google Scholar 

  164. Truta A, Popon TAH, Saraci G, Ghervan L, Pop IV. Novel non invasive diagnostic strategies in bladder cancer. Clujul Medical. 2016;89(2):187.

    PubMed  PubMed Central  Google Scholar 

  165. Lin Y, Wu J, Chen H, Mao Y, Liu Y, Mao Q, et al. Cyclin-dependent kinase 4 is a novel target in micoRNA-195-mediated cell cycle arrest in bladder cancer cells. FEBS Lett. 2012;586(4):442–7.

    CAS  PubMed  Google Scholar 

  166. Li Z, Lin C, Zhao L, Zhou L, Pan X, Quan J, et al. Oncogene miR-187-5p is associated with cellular proliferation, migration, invasion, apoptosis and an increased risk of recurrence in bladder cancer. Biomed Pharmacother. 2018;105:461–9.

    CAS  PubMed  Google Scholar 

  167. Jin H, Sun W, Zhang Y, Yan H, Liufu H, Wang S, et al. MicroRNA-411 downregulation enhances tumor growth by upregulating MLLT11 expression in human bladder cancer. Mol Therapy-Nucleic Acids. 2018;11:312–22.

    CAS  Google Scholar 

  168. Liu Y, Liu T, Jin H, Yin L, Yu H, Bi J. Mir-411 suppresses the development of bladder cancer by regulating ZnT1. OncoTargets Ther . 2018;11:8695.

    CAS  Google Scholar 

  169. Zhang XF, Zhang XQ, Chang ZX, Wu CC, Guo H. microRNA-145 modulates migration and invasion of bladder cancer cells by targeting N-cadherin. Mol Med Rep. 2018;17(6):8450–6.

    CAS  PubMed  Google Scholar 

  170. Xu T, Du XW, Hu JB, Zhu YF, Wu HL, Dai GP, et al. Anticancer effect of miR-96 inhibitor in bladder cancer cell lines. Oncol Lett. 2018;15(3):3814–9.

    PubMed  PubMed Central  Google Scholar 

  171. He X, Ping J, Wen D. MicroRNA-186 regulates the invasion and metastasis of bladder cancer via vascular endothelial growth factor C. Exp Therap Med. 2017;14(4):3253–8.

    CAS  Google Scholar 

  172. Liu M, Chen Y, Huang B, Mao S, Cai K, Wang L, et al. Tumor-suppressing effects of microRNA-612 in bladder cancer cells by targeting malic enzyme 1 expression. Int J Oncol. 2018;52(6):1923–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Wei Z, Hu X, Liu J, Zhu W, Zhan X, Sun S. MicroRNA-497 upregulation inhibits cell invasion and metastasis in T24 and BIU-87 bladder cancer cells. Mol Med Rep. 2017;16(2):2055–60.

    CAS  PubMed  Google Scholar 

  174. Zhang Y, Zhang Z, Li Z, Gong D, Zhan B, Man X, et al. MicroRNA-497 inhibits the proliferation, migration and invasion of human bladder transitional cell carcinoma cells by targeting E2F3. Oncol Rep. 2016;36(3):1293–300.

    CAS  PubMed  Google Scholar 

  175. Liao G, Chen F, Zhong J, Jiang X. MicroRNA-539 inhibits the proliferation and invasion of bladder cancer cells by regulating IGF-1R. Mol Med Rep. 2018;17(4):4917–24.

    CAS  PubMed  Google Scholar 

  176. Wu D, Niu X, Tao J, Li P, Lu Q, Xu A, et al. MicroRNA-379-5p plays a tumor-suppressive role in human bladder cancer growth and metastasis by directly targeting MDM2. Oncol Rep. 2017;37(6):3502–8.

    CAS  PubMed  Google Scholar 

  177. Zhao X, Ji Z, Xie Y, Liu G, Li H. MicroRNA-154 as a prognostic factor in bladder cancer inhibits cellular malignancy by targeting RSF1 and RUNX2. Oncol Rep. 2017;38(5):2727–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang J, Mao S, Wang L, Zhang W, Zhang Z, Guo Y, et al. MicroRNA-154 functions as a tumor suppressor in bladder cancer by directly targeting ATG7. Oncol Rep. 2019;41(2):819–28.

    CAS  PubMed  Google Scholar 

  179. Koutsioumpa M, Chen H-W, O’Brien N, Koinis F, Mahurkar-Joshi S, Vorvis C, et al. MKAD-21 suppresses the oncogenic activity of the miR-21/PPP2R2A/ERK molecular network in bladder cancer. Mol Cancer Ther. 2018;17(7):1430–40.

    CAS  PubMed  Google Scholar 

  180. Li P, Yang X, Yuan W, Yang C, Zhang X, Han J, et al. CircRNA-Cdr1as exerts anti-oncogenic functions in bladder cancer by sponging MicroRNA-135a. Cell Physiol Biochem. 2018;46(4):1606–16.

    CAS  PubMed  Google Scholar 

  181. Xiao J, Niu S, Zhu J, Lv L, Deng H, Pan D, et al. miR-22-3p enhances multi-chemoresistance by targeting NET1 in bladder cancer cells. Oncol Rep. 2018;39(6):2731–40.

    CAS  PubMed  Google Scholar 

  182. Xu R, Zhu X, Chen F, Huang C, Ai K, Wu H, et al. LncRNA XIST/miR-200c regulates the stemness properties and tumourigenicity of human bladder cancer stem cell-like cells. Cancer Cell Int. 2018;18(1):41.

    PubMed  PubMed Central  Google Scholar 

  183. Sugawara S, Yamada Y, Arai T, Okato A, Idichi T, Kato M, et al. Dual strands of the miR-223 duplex (miR-223-5p and miR-223-3p) inhibit cancer cell aggressiveness: targeted genes are involved in bladder cancer pathogenesis. J Hum Genet. 2018;63(5):657.

    CAS  PubMed  Google Scholar 

  184. Zeng S, Yu X, Ma C, Song R, Zhang Z, Zi X, et al. Transcriptome sequencing identifies ANLN as a promising prognostic biomarker in bladder urothelial carcinoma. Sci Rep. 2017;7(1):3151.

    PubMed  PubMed Central  Google Scholar 

  185. Liu X, Kong C, Zhang Z. miR-130b promotes bladder cancer cell proliferation, migration and invasion by targeting VGLL4. Oncol Rep. 2018;39(5):2324–32.

    CAS  PubMed  Google Scholar 

  186. Xu M, Li J, Wang X, Meng S, Shen J, Wang S, et al. MiR-22 suppresses epithelial–mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop. Cell Death Dis . 2018;9(2):209.

    PubMed  PubMed Central  Google Scholar 

  187. Li C, Zeng X, Liu Z, Li F, Wang K, Wu B. BDNF VAL66MET polymorphism elevates the risk of bladder cancer via MiRNA-146b in micro-vehicles. Cell Physiol Biochem. 2018;45(1):366–77.

    CAS  PubMed  Google Scholar 

  188. Zhai X, Xu W. Long noncoding RNA ATB promotes proliferation, migration, and invasion in bladder cancer by suppressing MicroRNA-126. Oncol Res Featur Preclin Clin Cancer Therapeut. 2018;26(7):1063–72.

    Google Scholar 

  189. Yang D, Du G, Xu A, Xi X, Li D. Expression of miR-149-3p inhibits proliferation, migration, and invasion of bladder cancer by targeting S100A4. Am J Cancer Res. 2017;7(11):2209.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang H, Jiang M, Liu Q, Han Z, Zhao Y, Ji S. miR-145-5p inhibits the proliferation and migration of bladder cancer cells by targeting TAGLN2. Oncol Lett. 2018;16(5):6355–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Wang S, Wu G, Han Y, Song P, Chen J, Wu Y, et al. miR-124 regulates STAT3-mediated cell proliferation, migration and apoptosis in bladder cancer. Oncol Lett. 2018;16(5):5875–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Chen X, Jia C, Jia C, Jin X, Gu X. MicroRNA-374a inhibits aggressive tumor biological behavior in bladder carcinoma by suppressing Wnt/β-catenin signaling. Cell Physiol Biochem. 2018;48(2):815–26.

    CAS  PubMed  Google Scholar 

  193. Zhu Y, Liang S, Pan H, Cheng Z, Rui X. Inhibition of miR-1247 on cell proliferation and invasion in bladder cancer through its downstream target of RAB36. J Biosci. 2018;43(2):365–73.

    CAS  PubMed  Google Scholar 

  194. Huang B, Zhai W, Hu G, Huang C, Xie T, Zhang J, et al. MicroRNA-206 acts as a tumor suppressor in bladder cancer via targeting YRDC. Am J Translat Res. 2016;8(11):4705.

    CAS  Google Scholar 

  195. Xiu Y, Liu Z, Xia S, Jin C, Yin H, Zhao W, et al. MicroRNA-137 upregulation increases bladder cancer cell proliferation and invasion by targeting PAQR3. PLoS ONE. 2014;9(10):e109734.

    PubMed  PubMed Central  Google Scholar 

  196. Wu X, Chen B, Shi H, Zhou J, Zhou F, Cao J, et al. miR-758-3p suppresses human bladder cancer cell proliferation, migration and invasion by targeting NOTCH2. Exp Therapeut Med. 2019;17(5):4273–8.

    CAS  Google Scholar 

  197. Liu X, Chen D, Li X. MiR-335 suppresses cell proliferation and migration by upregulating CRKL in bladder cancer. Eur Rev Med Pharmacol Sci. 2019;23(6):2399–408.

    CAS  PubMed  Google Scholar 

  198. Sugita S, Yoshino H, Yonemori M, Miyamoto K, Matsushita R, Sakaguchi T, et al. Tumor-suppressive microRNA-223 targets WDR62 directly in bladder cancer. Int J Oncol. 2019;54(6):2222–36.

    CAS  PubMed  Google Scholar 

  199. Zhang L, Yan R, Zhang S, Zhang H, Ruan X, Cao Z, et al. MicroRNA-338-3p inhibits the progression of bladder cancer through regulating ETS1 expression. Eur Rev Med Pharmacol Sci. 2019;23(5):1986–95.

    CAS  PubMed  Google Scholar 

  200. Fu S, Luan T, Jiang C, Huang Y, Li N, Wang H, et al. miR-3622a promotes proliferation and invasion of bladder cancer cells by downregulating LASS2. Gene. 2019;701:23–31.

    CAS  PubMed  Google Scholar 

  201. Chen J, Song B, Kong G. MicroRNA-663b downregulation inhibits proliferation and induces apoptosis in bladder cancer cells by targeting TUSC2. Mol Med Rep. 2019;19(5):3896–902.

    CAS  PubMed  Google Scholar 

  202. Hou Y. MiR-506 inhibits cell proliferation, invasion, migration and epithelial-to-mesenchymal transition through targeting RWDD4 in human bladder cancer. Oncol Lett. 2019;17(1):73–8.

    CAS  PubMed  Google Scholar 

  203. Wei XC, Lv ZH. MicroRNA-132 inhibits migration, invasion and epithelial-mesenchymal transition via TGFβ1/Smad2 signaling pathway in human bladder cancer. OncoTargets Ther. 2019;12:5937.

    CAS  Google Scholar 

  204. Zhang W, Shi D, Zhang J, Zhang Z, Guo Y, Wu Y, et al. MicroRNA-153 decreases tryptophan catabolism and inhibits angiogenesis in bladder cancer by targeting indoleamine 2, 3-dioxygenase 1. Front Oncol . 2019;9:619.

    PubMed  PubMed Central  Google Scholar 

  205. Yan T, Ye X. MicroRNA-328-3p inhibits the tumorigenesis of bladder cancer through targeting ITGA5 and inactivating PI3K/AKT pathway. Eur Rev Med Pharmacol Sci. 2019;23(12):5139–48.

    CAS  PubMed  Google Scholar 

  206. Tian H, Wang X, Lu J, Tian W, Chen P. MicroRNA-621 inhibits cell proliferation and metastasis in bladder cancer by suppressing Wnt/β-catenin signaling. Chemico–biological interactions. 2019.

  207. Sun W, Li S, Yu Y, Jin H, Xie Q, Hua X, et al. MicroRNA-3648 is upregulated to suppress TCF21, resulting in promotion of invasion and metastasis of human bladder cancer. Mol Ther Nucleic Acids. 2019;16:519–30.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors appreciate the cooperation of Mashhad University of Medical Sciences. This article was conducted within the projects, which have received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 754432 and the Polish Ministry of Science and Higher Education, from financial resources for science in 2018-2023 granted for the implementation of an international co-financed project.

Author information

Authors and Affiliations

Authors

Contributions

PKP, FY, HMT, ZH, and AS participated in data collection and manuscript writing. NK and AT participated as the grammatical editor. S-AE designed and drafted the article. All authors have fully read and approved the final manuscript.

Corresponding author

Correspondence to Seyed-Alireza Esmaeili.

Ethics declarations

Conflict of interest

The authors declare no competing financial and non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parizi, P.K., Yarahmadi, F., Tabar, H.M. et al. MicroRNAs and target molecules in bladder cancer. Med Oncol 37, 118 (2020). https://doi.org/10.1007/s12032-020-01435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-020-01435-0

Keywords

Navigation