Skip to main content
Log in

Expression of Hippo signaling pathway and Aurora kinase genes in chronic myeloid leukemia

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm resulting from clonal expansion of hematopoietic stem cells positive for the Philadelphia chromosome. The CML pathogenesis is associated with expression of the BCRABL1 oncogene, which encodes the Bcr–Abl protein with tyrosine kinase activity, promoting the leukemic cell exacerbated myeloproliferation and resistance to apoptosis. CML patients are usually treated with tyrosine kinase inhibitors (TKI), but some of them acquire resistance or are refractory to TKI. Thus, it is still relevant to elucidate the CML pathogenesis and seek new therapeutic targets, such as the Hippo signaling pathway and cell cycle regulatory genes from the Aurora kinase family. The present study quantified the expression level of genes encoding components of the Hippo signaling pathway (LATS1, LATS2, YAP, and TAZ), AURKA and AURKB in CML patients at different stages of the disease, who were resistant or sensitive to imatinib mesylate therapy, and in healthy individuals. The expression levels of the target genes were correlated with the CML Sokal’s prognostic score. The most striking results were the LATS2 and AURKA overexpression in CML patients, the overexpression of TAZ and AURKB in CML patients at advanced phases and TAZ in CML IM-resistant. The development of drugs and/or identification of tumor markers for the Hippo signaling pathway and the Aurora kinase family, either alone or in combination, can optimize CML treatment by enhancing the susceptibility of leukemic cells to apoptosis and leading to a better disease prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Melo JV, Barnes DJ. Chronic myeloid leukemia as a model of disease evolution in human cancer. Nat Rev Cancer. 2007;7(6):441–53.

    Article  CAS  PubMed  Google Scholar 

  2. Deininger MW, Vieira S, Mendiola R, et al. BCR–ABL1 tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res. 2000;60(7):2049–55.

    CAS  PubMed  Google Scholar 

  3. Perrotti D, Neviani P. From mRNA metabolism to cancer therapy: chronic myelogenous leukemia shows the way. Clin Cancer Res. 2007;13(6):1638–42.

    Article  CAS  PubMed  Google Scholar 

  4. Hehlmann R, Hochhaus A, Baccarani M. Chronic myeloid leukaemia. Lancet. 2007;370(9584):342–50.

    Article  CAS  PubMed  Google Scholar 

  5. Goldman JM. Chronic myeloid leukemia: still a few questions. Exp Hematol. 2004;32(1):2–10.

    Article  PubMed  Google Scholar 

  6. Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27(35):6041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sokal JE, Cox EB, Baccarani M, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63(4):789–99.

    CAS  PubMed  Google Scholar 

  8. Ma Y, Yang Y, Wang F, et al. Hippo-YAP signaling pathway: a new paradigm for cancer therapy. Int J Cancer. 2015;137(10):2275–86.

    Article  CAS  PubMed  Google Scholar 

  9. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15(2):73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010;24(9):862–74. https://doi.org/10.1101/gad.1909210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu T, Wang WS, Stewart RA, et al. Identifying tumor suppressors in genetic mosaics: the drosophila lats gene encodes a putative protein kinase. Development. 1995;121:1053–63.

    CAS  PubMed  Google Scholar 

  12. Justice RW, Zilian O, Woods DF, et al. The drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995;9:534–46.

    Article  CAS  PubMed  Google Scholar 

  13. Tao W, Zhang S, Turenchalk GS, et al. Human homologue of the drosophila melanogaster lats tumor suppressor modulates CDC2 activity. Nat Genet. 1999;21:177–81.

    Article  CAS  PubMed  Google Scholar 

  14. Hori T, Takaori-Kondo A, Kamikubo Y, et al. Molecular cloning of a novel human protein kinase, kpm, that is homologous to warts/lats, a drosophila tumor suppressor. Oncogene. 2000;19:3101–9.

    Article  CAS  PubMed  Google Scholar 

  15. Yabuta N, Fujii T, Copeland NG, et al. Structure, expression and chromosome mapping of LATS2, a mammalian homologue of the drosophila tumor suppressor gene lats/warts. Genomics. 2000;63:263–70.

    Article  CAS  PubMed  Google Scholar 

  16. Edgar BA. From cell structure to transcription: Hippo forges a new path. Cell. 2006;124:267–73.

    Article  CAS  PubMed  Google Scholar 

  17. Pan D. Hippo signaling in organ size control. Genes Dev. 2007;21:886–97.

    Article  CAS  PubMed  Google Scholar 

  18. Overholtzer M, Zhang J, Smolen GA, et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 2006;103:12405–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hao Y, Chun A, Cheung K, et al. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283:5496–509.

    Article  CAS  PubMed  Google Scholar 

  20. Lei QY, Zhang H, Zhao B, et al. TAZ promotes cell proliferation and epithelial mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol. 2008;28:2426–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan H, Nousiainen M, Chalamalasetty RB, et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 2005;24:2076–86.

    Article  CAS  PubMed  Google Scholar 

  22. Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol. 2008;18:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hergovich A, Schmitz D, Hemmings BA. The human tumour suppressor LATS1 is activated by human MOB1 at the membrane. Biochem Biophys Res Commun. 2006;345:50–8.

    Article  CAS  PubMed  Google Scholar 

  24. Cordenonsi M, Zanconato F, Azzolin L, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147:759–72.

    Article  CAS  PubMed  Google Scholar 

  25. Bartucci M, Dattilo R, Moriconi C, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2014;4(6):681–90.

    Google Scholar 

  26. Machado-Neto JA, de Melo Campos P, Olalla Saad ST, et al. YAP1 expression in myelodysplastic syndromes and acute leukemias. Leuk Lymphoma. 2014;55(10):2413–5.

    Article  PubMed  Google Scholar 

  27. Safari S, Movafagh A, Zare-Adollahi D, et al. MST1/2 and YAP1 gene expression in acute myeloid leukemia. Leuk Lymphoma. 2014;55(9):2189–91.

    Article  PubMed  Google Scholar 

  28. Yuen HF, McCrudden CM, Huang YH, et al. TAZ expression as a prognostic indicator in colorectal cancer. PLoS ONE. 2013;8:e54211. https://doi.org/10.1371/journal.pone.0054211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farag SS. The potential role of aurora kinase inhibitors in haematological malignancies. Br J Haematol. 2011;5(5):561–79.

    Article  Google Scholar 

  30. Yabuta N, Mukai S, Okada N, et al. The tumor suppressor Lats2 is pivotal in Aurora A and Aurora B signaling during mitosis. Cell Cycle. 2011;10(16):2724–36.

    Article  CAS  PubMed  Google Scholar 

  31. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumors of haematopoietic and lymphoid tissues. 4th ed. Lyon: World Health Organization (WHO)/IARC; 2008.

    Google Scholar 

  32. Bartucci M, Dattilo R, Moriconi C, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015;34(6):681–90.

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Shi S, Guo Z, et al. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS ONE. 2013;8(6):e65539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boehrer S, Adès L, Tajeddine N, et al. Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome. Oncogene. 2009;28:2205–18.

    Article  CAS  PubMed  Google Scholar 

  35. Walters DK, Wu X, Tschumper RC, et al. Evidence for ongoing DNA damage in multiple myeloma cells as revealed by constitutive phosphorylation of H2AX. Leukemia. 2011;25:1344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cottini F, Hideshima T, Xu C, et al. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med. 2014;20:599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reuven N, Adler J, Meltser V, et al. The Hippo pathway kinase Lats2 prevents DNA damage-induced apoptosis through inhibition of the tyrosine kinase c-Abl. Cell Death Differ. 2013;20:1330–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sasi, et al. DDK promotes tumor chemoresistance and survival via multiple pathways. Neoplasia. 2017;19:439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferreira AF, de Oliveira GL, Tognon R, et al. Apoptosis-related gene expression profile in chronic myeloid leukemia patients after imatinib mesylate and dasatinib therapy. Acta Haematol. 2015;133(4):354–64.

    Article  CAS  PubMed  Google Scholar 

  41. Nakai H, Misawa S, Toguchida J, et al. Frequent p53 gene mutations in blast crisis of chronic myelogenous leukemia, especially in myeloid crisis harboring loss of chromosome 17p. Cancer Res. 1992;52:6588–93.

    CAS  PubMed  Google Scholar 

  42. Tian T, Li A, Lu H, et al. TAZ promotes temozolomide resistance by upregulating MCL-1 in human glioma cells. Biochem Biophys Res Commun. 2015;463(4):638–43.

    Article  CAS  PubMed  Google Scholar 

  43. Andrews PD, Knatko E, Moore WJ, et al. Mitotic mechanics: the Auroras come into view. Curr Opin Cell Biol. 2003;15(6):672–83.

    Article  CAS  PubMed  Google Scholar 

  44. Farag SS. The potential role of aurora kinase inhibitors in haematological malignancies. Br J Haematol. 2011;155(5):561–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ikezoe T, Takeuchi T, Yang J, et al. Analysis of Aurora B kinase in non-Hodgkin lymphoma. Lab Invest. 2009;89:1364–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Coordination for the Improvement of Higher Education Personnel (CAPES) and FAPESP (2015-23555-3 and 2015-21237-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Zambuzi Cardoso Marsola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants complied with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

All the patients and healthy individuals who participated in this study signed the Informed Consent Form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsola, A.P.Z.C., Simões, B.P., Palma, L.C. et al. Expression of Hippo signaling pathway and Aurora kinase genes in chronic myeloid leukemia. Med Oncol 35, 26 (2018). https://doi.org/10.1007/s12032-018-1079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1079-6

Keywords

Navigation