Skip to main content

Advertisement

Log in

Targeting NTRK fusion in non-small cell lung cancer: rationale and clinical evidence

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

In the era of personalized medicine, the identification of targetable genetic alterations represented a major step forward in anticancer therapy. NTRK rearrangements represent the molecular driver of a subset of solid tumors, including 3% of non-small-cell lung cancers (NSCLCs). Preliminary data indicate that molecularly selected NSCLC patients harboring NTRK fusions derive an unprecedented clinical benefit from Trk-directed targeted therapies. The aim of this review is to describe the molecular biology of NTRK signaling pathway and to summarize the preclinical data on novel Trk inhibitors, touching upon the clinical development of these inhibitors for the treatment of advanced NSCLC, which have already shown encouraging anticancer activity and acceptable safety profile in early phase I clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. American Cancer Society. Non-small cell lung cancer survival rates by stage. https://www.cancer.org/cancer/lungcancernonsmallcell/detaileddpfguide/non-small-cell-lung-cancer-survival-rates. Accessed 01 Feb 2017.

  3. Passiglia F, Bronte G, Castiglia M, Listì A, Calò V, Toia F, et al. Prognostic and predictive biomarkers for targeted therapy in NSCLC: for whom the bell tolls? Expert Opin Biol Ther. 2015;15(11):1553–66.

    Article  PubMed  Google Scholar 

  4. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.

    Article  CAS  PubMed  Google Scholar 

  5. Han JY, Park K, Kim SW, Lee DH, Kim HY, Kim HT, et al. First-SIGnaL: first-line single-agent Iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J Clin Oncol. 2012;30(10):1122–8.

    Article  CAS  PubMed  Google Scholar 

  6. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.

    Article  CAS  PubMed  Google Scholar 

  8. Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31:3327–34.

    Article  CAS  PubMed  Google Scholar 

  9. Yang JCH, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16:141–51.

    Article  CAS  PubMed  Google Scholar 

  10. Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First line crizotinib versus chemotherapy in ALK positive lung cancer: results of a phase III study (PROFILE 1014). N Engl J Med. 2014;371:2167–77.

    Article  PubMed  Google Scholar 

  11. Soria JC, Tan DS, Chiari R, Wu YL, Paz-Ares L, Wolf J, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389(10072):917–29.

    Article  CAS  PubMed  Google Scholar 

  12. Nokihara H, Hida T, Kondo M, Kim YH, Azuma K, Seto T, et al. Alectinib (ALC) versus crizotinib (CRZ) in ALK inhibitor naive ALK-positive non-small cell lung cancer (ALK + NSCLC): Primary results from the J-ALEX study. J Clin Oncol. 2016;34(S5):9008 (abstract).

    Google Scholar 

  13. Califano R, Abidin A, Tariq NU, Economopoulou P, Metro G, Mountzios G. Beyond EGFR and ALK inhibition: unravelling and exploiting novel genetic alterations in advanced non small-cell lung cancer. Cancer Treat Rev. 2015;41(5):401–11.

    Article  CAS  PubMed  Google Scholar 

  14. Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19:1469–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5:25–34.

    Article  CAS  PubMed  Google Scholar 

  16. Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, et al. An oncogenic NTRK Fusion in a patient with Soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov. 2015;5:1049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991;350:158–60.

    Article  CAS  PubMed  Google Scholar 

  18. Klein R, Jing SQ, Nanduri V, O’Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991;65:189–97.

    Article  CAS  PubMed  Google Scholar 

  19. Loeb DM, Stephens RM, Copeland T, et al. A Trk nerve growth factor (NGF) receptor point mutation affecting interaction with phospholipase C-gamma 1 abolishes NGF-promoted peripherin induction but not neurite outgrowth. J Biol Chem. 1994;269:8901–10.

    CAS  PubMed  Google Scholar 

  20. Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001;169:107–14.

    Article  CAS  PubMed  Google Scholar 

  21. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.

    Article  CAS  PubMed  Google Scholar 

  22. Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open. 2016;1(2):e000023.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Russell JP, Powell DJ, Cunnane M, Greco A, Portella G, Santoro M, et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene. 2000;19:5729–35.

    Article  CAS  PubMed  Google Scholar 

  24. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–76.

    Article  CAS  PubMed  Google Scholar 

  25. Tognon C, Garnett M, Kenward E, Kay R, Morrison K, Sorensen PH. The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res. 2001;61:8909–16.

    CAS  PubMed  Google Scholar 

  26. Edel MJ, Shvarts A, Medema JP, Bernards R. An in vivo functional genetic screen reveals a role for the TRK-T3 oncogene in tumor progression. Oncogene. 2004;23:4959–65.

    Article  CAS  PubMed  Google Scholar 

  27. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  28. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, Leeman KT, et al. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci USA. 2014;111:10299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okamura K, Harada T, Wang S, Ijichi K, Furuyama K, Koga T, et al. Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer. 2012;78:100–6.

    Article  PubMed  Google Scholar 

  31. Varella-Garcia M, Kako S, Nguyen C, et al. FISHing TRK activation by gene rearrangements in non small cell lung cancer. J Thorac Oncol. 2015;10:9 (abstract: 3701).

    Google Scholar 

  32. Tatematsu T, Sasaki H, Shimizu S, Okuda K, Shitara M, Hikosaka Y, et al. Investigation of neurotrophic tyrosine kinase receptor 1 fusions and neurotrophic tyrosine kinase receptor family expression in non-small-cell lung cancer and sensitivity to AZD7451 in vitro. Mol Clin Oncol. 2014;2:725–30.

    PubMed  PubMed Central  Google Scholar 

  33. Farago AF, Le LP, Zheng Z, Muzikansky A, Drilon A, Patel M, et al. durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol. 2015;10(12):1670–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Odate S, Nakamura K, Onishi H, Kojima M, Uchiyama A, Nakano K, et al. TrkB/BDNF signaling pathway is a potential therapeutic target for pulmonary large cell neuroendocrine carcinoma. Lung Cancer. 2013;79:205–14.

    Article  PubMed  Google Scholar 

  35. Odate S, Onishi H, Nakamura K, Kojima M, Uchiyama A, Kato M, et al. Tropomyosin-related kinase B inhibitor has potential for tumor regression and relapse prevention in pulmonary large cell neuroendocrine carcinoma. Anticancer Res. 2013;33:3699–703.

    CAS  PubMed  Google Scholar 

  36. Anderson D, Ciomei M, Banfi P, Cribioli S, Ardini E, Galvani A, et al. Inhibition of Trk-driven tumors by the pan-Trk inhibitor RXDX-101. Eur J Cancer. 2014;50(Supplement 6):101.

    Article  Google Scholar 

  37. Ardini E, Menichincheri M, De Ponti C, et al. Characterization of NMS-E628, a small molecule inhibitor of anaplastic lymphoma kinase with antitumor efficacy in ALK-dependent lymphoma and non-small cell lung cancer models. Mol Cancer Ther. 2009;8(12 suppl):A244.

    Article  Google Scholar 

  38. Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, et al. An oncogenic NTRK Fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov. 2015;5(10):1049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ivanov SV, Panaccione A, Brown B, Guo Y, Moskaluk CA, Wick MJ, et al. TrkC signaling is activated in adenoid cystic carcinoma and requires NT-3 to stimulate invasive behavior. Oncogene. 2013;32:10–3698.

    Article  Google Scholar 

  40. Tatematsu T, Sasaki H, Shimizu S, Okuda K, Shitara M, Hikosaka Y, et al. Investigation of neurotrophic tyrosine kinase receptor 1 fusions and neurotrophic tyrosine kinase receptor family expression in non-small-cell lung cancer and sensitivity to AZD7451 in vitro. Mol Clin Oncol. 2014;2(5):725–30.

    PubMed  PubMed Central  Google Scholar 

  41. De Braud FG, Niger M, Damian S, Bardazza B, Martinetti A, Pelosi G, et al. Alka-372-001: first-in-human, phase I study of entrectinib—an oral pan-trk, ROS1, and ALK inhibitor—in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol 2015;33(suppl; abstr 2517).

  42. Patel MR, Bauer TM, Liu SV, Drilon AE, Wheler JJ, Shaw AT, et al. STARTRK-1: phase 1/2a study of entrectinib, an oral Pan-Trk, ROS1, and ALK inhibitor, in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol 2015; 33(suppl; abstr 2596).

  43. Burris HA, Brose MS, Shaw AT, Bauer TM, Farago AF, Doebele RC, et al. A first-in-human study of LOXO-101, a highly selective inhibitor of the tropomyosin receptor kinase (TRK) family. J Clin Oncol 2015;33(suppl; abstr TPS2624).

  44. Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, Leeman KT, et al. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci USA. 2014;111(28):10299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Russo M, Misale S, Wei G, Siravegna G, Crisafulli G, Lazzari L, et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov. 2016;6:36–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Italian Association for Cancer Research (AIRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biagio Ricciuti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was not required as this article does not contain any studies with human participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricciuti, B., Brambilla, M., Metro, G. et al. Targeting NTRK fusion in non-small cell lung cancer: rationale and clinical evidence. Med Oncol 34, 105 (2017). https://doi.org/10.1007/s12032-017-0967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-0967-5

Keywords

Navigation