Skip to main content

Advertisement

Log in

Identification and characterization of biomarkers and their functions for Lapatinib-resistant breast cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Lapatinib, a novel oral dual tyrosine kinase inhibitor blocking HER1 and HER2 pathways, has presented beneficial effects on breast cancer with positive HER2. However, its efficacy is largely limited by the occurrence of acquired drug resistance. In this study, we aimed to explore the underlying molecular mechanisms of Lapatinib resistance using bioinformatics strategies. The gene expression profile of SKBR3-R (acquired Lapatinib-resistant) and SKBR3 (Lapatinib-sensitive) cell line was downloaded from gene expression omnibus database. Then, the differentially expressed genes (DEGs) were selected using dChip software. Furthermore, gene ontology (GO) and pathway enrichment analyses were carried out by using DAVID database. Finally, the protein–protein interaction network was constructed, and the hub genes in the network were analyzed by using STRING database. A total of 300 DEGs, such as HSPA5, MAP1LC3A and RASSF2, were screened out. GO functional enrichment analysis showed that the genes were associated with cell membrane component-related, stimulus-related and binding-related items. KEGG pathway analysis indicated that three dysfunctional pathways, including PPAR signaling pathway, cytokine–cytokine receptor interaction and pathways in cancer, were enriched. Protein–protein interaction network construction revealed that some hub genes, such as PPARG, TGFBI, TGFBR2, TIMP1, CTGF, UBA52 and JUN, might have an association with Lapatinib resistance. The present study offered new insights into the molecular mechanisms of Lapatinib resistance and identified a series of important hub genes that have the potential to be the targets for treatment of Lapatinib-resistant breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schroeder RL, Stevens CL, Sridhar J. Small molecule tyrosine kinase inhibitors of ErbB2/HER2/Neu in the treatment of aggressive breast cancer. Molecules. 2014;19(9):15196–212. doi:10.3390/molecules190915196.

    Article  PubMed  Google Scholar 

  2. Creedon H, Byron A, Main J, Hayward L, Klinowska T, Brunton VG. Exploring mechanisms of acquired resistance to HER2 (human epidermal growth factor receptor 2)-targeted therapies in breast cancer. Biochem Soc Trans. 2014;42(4):822–30. doi:10.1042/BST20140109.

    Article  CAS  PubMed  Google Scholar 

  3. Araki K, Fukada I, Horii R, Takahashi S, Akiyama F, Iwase T, et al. Lapatinib-associated mucocutaneous toxicities are clinical predictors of improved progression-free survival in patients with human epidermal growth factor receptor (HER2)-positive advanced breast cancer. Breast Cancer Res Treat. 2014;148(1):197–209. doi:10.1007/s10549-014-3148-7.

    Article  CAS  PubMed  Google Scholar 

  4. Figueroa-Magalhaes MC, Jelovac D, Connolly RM, Wolff AC. Treatment of HER2-positive breast cancer. Breast. 2014;23(2):128–36. doi:10.1016/j.breast.2013.11.011.

    Article  PubMed  Google Scholar 

  5. Rexer BN, Arteaga CL. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications. Crit Rev Oncog. 2012;17(1):1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brady SW, Zhang J, Seok D, Wang H, Yu D. Enhanced PI3K p110alpha signaling confers acquired lapatinib resistance that can be effectively reversed by a p110alpha-selective PI3K inhibitor. Mol Cancer Ther. 2014;13(1):60–70. doi:10.1158/1535-7163.MCT-13-0518.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Quan H, Zhao J, Xie C, Wang L, Lou L. RON confers lapatinib resistance in HER2-positive breast cancer cells. Cancer Lett. 2013;340(1):43–50. doi:10.1016/j.canlet.2013.06.022.

    Article  CAS  PubMed  Google Scholar 

  8. Formisano L, Nappi L, Rosa R, Marciano R, D’Amato C, D’Amato V, et al. Epidermal growth factor-receptor activation modulates Src-dependent resistance to lapatinib in breast cancer models. Breast Cancer Res. 2014;16(3):R45. doi:10.1186/bcr3650.

    Article  PubMed  PubMed Central  Google Scholar 

  9. McDermott MS, Browne BC, Conlon NT, O’Brien NA, Slamon DJ, Henry M, et al. PP2A inhibition overcomes acquired resistance to HER2 targeted therapy. Mol Cancer. 2014;13:157. doi:10.1186/1476-4598-13-157.

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Luca A, D’Alessio A, Gallo M, Maiello MR, Bode AM, Normanno N. Src and CXCR4 are involved in the invasiveness of breast cancer cells with acquired resistance to lapatinib. Cell Cycle. 2014;13(1):148–56. doi:10.4161/cc.26899.

    Article  PubMed  Google Scholar 

  11. Bailey ST, Miron PL, Choi YJ, Kochupurakkal B, Maulik G, Rodig SJ, et al. NF-kappaB activation-induced anti-apoptosis renders HER2-positive cells drug resistant and accelerates tumor growth. Mol Cancer Res. 2014;12(3):408–20. doi:10.1158/1541-7786.MCR-13-0206-T.

    Article  CAS  PubMed  Google Scholar 

  12. Gayle SS, Castellino RC, Buss MC, Nahta R. MEK inhibition increases lapatinib sensitivity via modulation of FOXM1. Curr Med Chem. 2013;20(19):2486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee YY, Kim HP, Kang MJ, Cho BK, Han SW, Kim TY, et al. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line. Exp Mol Med. 2013;45:e64. doi:10.1038/emm.2013.115.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thery JC, Spano JP, Azria D, Raymond E, Penault Llorca F. Resistance to human epidermal growth factor receptor type 2-targeted therapies. Eur J Cancer. 2014;50(5):892–901. doi:10.1016/j.ejca.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  15. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R, et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Can Res. 2009;69(17):6871–8. doi:10.1158/0008-5472.CAN-08-4490.

    Article  CAS  Google Scholar 

  16. Komurov K, Tseng JT, Muller M, Seviour EG, Moss TJ, Yang L, et al. The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells. Mol Syst Biol. 2012;8:596. doi:10.1038/msb.2012.25.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Uckun FM, Qazi S, Ozer Z, Garner AL, Pitt J, Ma H, et al. Inducing apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response signalling network. Br J Haematol. 2011;153(6):741–52. doi:10.1111/j.1365-2141.2011.08671.x.

    Article  CAS  PubMed  Google Scholar 

  18. Chang YW, Chen HA, Tseng CF, Hong CC, Ma JT, Hung MC, et al. De-acetylation and degradation of HSPA5 is critical for E1A metastasis suppression in breast cancer cells. Oncotarget. 2014;5:10558.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nihira K, Miki Y, Iida S, Narumi S, Ono K, Iwabuchi E, et al. An activation of LC3A-mediated autophagy contributes to de novo and acquired resistance to EGFR tyrosine kinase inhibitors in lung adenocarcinoma. J Pathol. 2014;234(2):277–88. doi:10.1002/path.4354.

    CAS  PubMed  Google Scholar 

  20. Koukourakis MI, Giatromanolaki A, Bottini A, Cappelletti MR, Zanotti L, Allevi G, et al. Prospective neoadjuvant analysis of PET imaging and mechanisms of resistance to Trastuzumab shows role of HIF1 and autophagy. Br J Cancer. 2014;110(9):2209–16. doi:10.1038/bjc.2014.196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clark J, Freeman J, Donninger H. Loss of RASSF2 enhances tumorigencity of lung cancer cells and confers resistance to chemotherapy. Mol Biol Int. 2012;2012:705948. doi:10.1155/2012/705948.

    PubMed  PubMed Central  Google Scholar 

  22. Mithraprabhu S, Khong T, Spencer A. Overcoming inherent resistance to histone deacetylase inhibitors in multiple myeloma cells by targeting pathways integral to the actin cytoskeleton. Cell Death Dis. 2014;5:e1134. doi:10.1038/cddis.2014.98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eljack ND, Ma HY, Drucker J, Shen C, Hambley TW, New EJ, et al. Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallomics. 2014;6(11):2126–33. doi:10.1039/c4mt00238e.

    Article  CAS  PubMed  Google Scholar 

  24. Lozy F, Karantza V. Autophagy and cancer cell metabolism. Semin Cell Dev Biol. 2012;23(4):395–401. doi:10.1016/j.semcdb.2012.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cizkova K, Konieczna A, Erdosova B, Lichnovska R, Ehrmann J. Peroxisome proliferator-activated receptors in regulation of cytochromes P450: new way to overcome multidrug resistance? J Biomed Biotechnol. 2012;2012:656428. doi:10.1155/2012/656428.

    Article  PubMed  PubMed Central  Google Scholar 

  26. To KK, Tomlinson B. Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARgamma agonists. Br J Pharmacol. 2013;170(5):1137–51. doi:10.1111/bph.12367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chow A, Arteaga CL, Wang SE. When tumor suppressor TGFbeta meets the HER2 (ERBB2) oncogene. J Mammary Gland Biol Neoplasia. 2011;16(2):81–8. doi:10.1007/s10911-011-9206-4.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hekmat O, Munk S, Fogh L, Yadav R, Francavilla C, Horn H, et al. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells. J Proteome Res. 2013;12(9):4136–51. doi:10.1021/pr400457u.

    Article  CAS  PubMed  Google Scholar 

  29. Wang MY, Chen PS, Prakash E, Hsu HC, Huang HY, Lin MT, et al. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Can Res. 2009;69(8):3482–91. doi:10.1158/0008-5472.CAN-08-2524.

    Article  CAS  Google Scholar 

  30. Mackay C, Carroll E, Ibrahim AF, Garg A, Inman GJ, Hay RT, et al. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Can Res. 2014;74(8):2246–57. doi:10.1158/0008-5472.CAN-13-2131.

    Article  CAS  Google Scholar 

  31. Kadera BE, Toste PA, Wu N, Li L, Nguyen AH, Dawson DW, et al. Low expression of the E3 ubiquitin ligase CBL confers chemoresistance in human pancreatic cancer and is targeted by epidermal growth factor receptor inhibition. Clin Cancer Res. 2014. doi:10.1158/1078-0432.CCR-14-0610.

    PubMed  PubMed Central  Google Scholar 

  32. Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett. 2014;347(2):159–66. doi:10.1016/j.canlet.2014.03.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was funded by the special foundation for the 1130 Project of Xinqiao Hospital of Third Military Medical University (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlei Zhuo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, Y., Zhuo, W. et al. Identification and characterization of biomarkers and their functions for Lapatinib-resistant breast cancer. Med Oncol 34, 89 (2017). https://doi.org/10.1007/s12032-017-0953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-0953-y

Keywords

Navigation