Skip to main content

Advertisement

Log in

HDAC6-mediated EGFR stabilization and activation restrict cell response to sorafenib in non-small cell lung cancer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Sorafenib is a multi-targeted kinase inhibitor and has been the subject of extensive clinical research in advanced non-small cell lung cancer (NSCLC). However, sorafenib fails to improve overall survival of patients with advanced NSCLC. The molecular mechanisms that account for this phenomenon are unclear. Here we show that sorafenib treatment stabilizes epidermal growth factor receptor (EGFR) and activates EGFR pathway. Moreover, this is partly mediated by stabilization of histone deacetylase 6 (HDAC6), which has been shown to regulate EGFR endocytic trafficking and degradation. Overexpression of HDAC6 confers resistance to sorafenib in NSCLC cells. Inhibition of HDAC6 with selective inhibitors synergizes with sorafenib to kill NSCLC cells via inhibition of sorafenib-mediated EGFR pathway activation. Taken together, our findings might partly explain the failure of Phase III trial of sorafenib in improving overall survival of advanced NSCLC patients and bear possible implications for the improvement on the efficacy of sorafenib in treatment of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AKT:

v-akt murine thymoma viral oncogene homolog

ERK:

Extracellular signal-regulated kinase

MEK:

Mitogen-activated protein kinase kinase

Flt3:

Fms-related tyrosine kinase 3

Hsp90:

Heat-shock protein 90

PDGFR:

Platelet-derived growth factor

PI3K:

Phosphoinositide 3-kinase

PARP:

Poly ADP-ribose polymerase

Ras:

Rat sarcoma viral oncogene homolog

Raf:

Rapidly accelerated fibrosarcoma

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Ettinger DS, Wood DE, Akerley W, et al. Non-small cell lung cancer, version 6.2015. J Natl Compr Cancer Netw. 2015;13(5):515–24.

    Google Scholar 

  2. Politi K, Herbst RS. Lung cancer in the era of precision medicine. Clin Cancer Res. 2015;21(10):2213–20.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Gold KA, Kim E. Sorafenib in non-small cell lung cancer. Expert Opin Investig Drugs. 2012;21(9):1417–26.

    Article  CAS  PubMed  Google Scholar 

  4. Takezawa K, Okamoto I, Yonesaka K, et al. Sorafenib inhibits non-small cell lung cancer cell growth by targeting B-RAF in KRAS wild-type cells and C-RAF in KRAS mutant cells. Cancer Res. 2009;69(16):6515–21.

    Article  CAS  PubMed  Google Scholar 

  5. Scagliotti G, Novello S, von Pawel J, et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(11):1835–42.

    Article  CAS  PubMed  Google Scholar 

  6. Kim ES, Herbst RS, Wistuba II, et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 2011;1(1):44–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blumenschein GJ, Saintigny P, Liu S, et al. Comprehensive biomarker analysis and final efficacy results of sorafenib in the BATTLE trial. Clin Cancer Res. 2013;19(24):6967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10(11):760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.

    Article  CAS  PubMed  Google Scholar 

  10. Blivet-Van EM, Chettouh H, Fartoux L, et al. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J Hepatol. 2012;57(1):108–15.

    Article  Google Scholar 

  11. Ezzoukhry Z, Louandre C, Trecherel E, et al. EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer. 2012;131(12):2961–9.

    Article  CAS  PubMed  Google Scholar 

  12. Goh LK, Sorkin A. Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2013;5(5):a17459.

    Article  Google Scholar 

  13. Gao YS, Hubbert CC, Yao TP. The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J Biol Chem. 2010;285(15):11219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deribe YL, Wild P, Chandrashaker A, et al. Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci Signal. 2009;2(102):a84.

    Google Scholar 

  15. Zhang L, Liu S, Liu N, et al. Proteomic identification and functional characterization of MYH9, Hsc70, and DNAJA1 as novel substrates of HDAC6 deacetylase activity. Protein Cell. 2015;6(1):42–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li D, Sun X, Zhang L, et al. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells. Protein Cell. 2014;5(3):214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

    Article  PubMed  Google Scholar 

  18. Kozikowski AP, Tapadar S, Luchini DN, Kim KH, Billadeau DD. Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J Med Chem. 2008;51(15):4370–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santo L, Hideshima T, Kung AL, et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012;119(11):2579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Di Marco V, De Vita F, Koskinas J, Semela D, Toniutto P, Verslype C. Sorafenib: from literature to clinical practice. Ann Oncol. 2013;24(Suppl 2):i30–7.

    Article  Google Scholar 

  21. Kramer OH, Mahboobi S, Sellmer A. Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol Sci. 2014;35(10):501–9.

    Article  PubMed  Google Scholar 

  22. Zhang Y, Li N, Caron C, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 2003;22(5):1168–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Namdar M, Perez G, Ngo L, Marks PA. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci USA. 2010;107(46):20003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB, LaRusso NF. HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res. 2013;73(7):2259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dhanyamraju PK, Holz PS, Finkernagel F, Fendrich V, Lauth M. Histone deacetylase 6 represents a novel drug target in the oncogenic Hedgehog signaling pathway. Mol Cancer Ther. 2015;14(3):727–39.

    Article  CAS  PubMed  Google Scholar 

  26. Ai J, Wang Y, Dar JA, et al. HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol Endocrinol. 2009;23(12):1963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weihua Z, Tsan R, Huang WC, et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell. 2008;13(5):385–93.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tan X, Thapa N, Sun Y, Anderson RA. A kinase-independent role for EGF receptor in autophagy initiation. Cell. 2015;160(1–2):145–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fischer TD, Wang JH, Vlada A, Kim JS, Behrns KE. Role of autophagy in differential sensitivity of hepatocarcinoma cells to sorafenib. World J Hepatol. 2014;6(10):752–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lin JC, Huang WP, Liu CL, et al. Sorafenib induces autophagy in human myeloid dendritic cells and prolongs survival of skin allografts. Transplantation. 2013;95(6):791–800.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng B, Zhu H, Gu D, et al. MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib. Biochem Biophys Res Commun. 2015;459(2):234–9.

    Article  CAS  PubMed  Google Scholar 

  32. Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010;29(5):969–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007;447(7146):859–63.

    Article  CAS  PubMed  Google Scholar 

  34. Watson GW, Wickramasekara S, Fang Y, et al. HDAC6 activity is not required for basal autophagic flux in metastatic prostate cancer cells. Exp Biol Med (Maywood). 2015. doi:10.1177/1535370215618518.

    Google Scholar 

Download references

Acknowledgments

We acknowledge Prof. Jun Zhou of Nankai University for kindly providing the HDAC6 over-expression plasmids. This work was supported by the Natural Sciences Foundation of Hubei Provience (No. 2013CFA006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conghua Xie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hu, P., Tang, F. et al. HDAC6-mediated EGFR stabilization and activation restrict cell response to sorafenib in non-small cell lung cancer cells. Med Oncol 33, 50 (2016). https://doi.org/10.1007/s12032-016-0765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0765-5

Keywords

Navigation