Skip to main content

Advertisement

Log in

FGFR3 promotes angiogenesis-dependent metastasis of hepatocellular carcinoma via facilitating MCP-1-mediated vascular formation

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The biological role of fibroblast growth factor receptor 3 (FGFR3) in tumor angiogenesis of hepatocellular carcinoma (HCC) has not been discussed before. Our previous work had indicated FGFR3 was overexpressed in HCC, and silencing FGFR3 in Hu7 cells could regulate tumorigenesis via down-regulating the phosphorylation level of key members of classic signaling pathways including ERK and AKT. In the present work, we explored the role of FGFR3 in angiogenesis-dependent metastasis by using SMMC-7721 and QGY-7703 stable cell lines. Our results indicated FGFR3 could regulate in vitro cell migration ability and in vivo lung metastasis ability of HCC, which was in accordance with increased angiogenesis ability in vitro and in vivo. Using the supernatant from SMMC-7721/FGFR3 cells, we conducted a human angiogenesis protein microarray including 43 angiogenesis factors and found that FGFR3 modulated angiogenesis and metastasis of HCC mainly by promoting the protein level of monocyte chemotactic protein 1 (MCP-1). Silencing FGFR3 by short hairpin RNA (shRNA) could reduce MCP-1 level in lysates and supernatant of QGY-7703 cells and SMMC-7721 cells. Silencing MCP-1 in QGY-7703 or SMMC-7721 cells could induce similar phenotypes compared with silencing FGFR3. Our results suggested FGFR3 promoted metastasis potential of HCC, at least partially if not all, via facilitating MCP-1-mediated angiogenesis, in addition to previously found cell growth and metastasis. MCP-1, a key medium between HCC cells and HUVECs, might be a novel anti-vascular target in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shiina S, Tateishi R, Arano T, Uchino K, Enooku K, Nakagawa H, et al. Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am J Gastroenterol. 2012;107(4):569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Katyal S, Oliver JH III, Peterson MS, Ferris JV, Carr BS, Baron RL. Extrahepatic metastases of hepatocellular carcinoma 1. Radiology. 2000;216(3):698–703.

    Article  CAS  PubMed  Google Scholar 

  4. Fang Y, Xue JL, Shen Q, Chen J, Tian L. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012;55(6):1852–62.

    Article  CAS  PubMed  Google Scholar 

  5. Yau WL, Lam CSC, Ng L, Chow AKM, Chan STC, Chan JYK, et al. Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process. PloS one. 2013;8(3):e57882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett. 2012;320(2):130–7.

    Article  CAS  PubMed  Google Scholar 

  7. Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, et al. Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol. 2012;181(4):1115–25.

    Article  CAS  PubMed  Google Scholar 

  8. Kirschmann DA, Seftor EA, Hardy KM, Seftor RE, Hendrix MJ. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res. 2012;18(10):2726–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu J, Huang J, Yao W-Y, Ben Q-W, Chen D-F, He X-Y, et al. The origins of vacularization in tumors. Front Biosci. 2012;17(1):2559–65.

    Article  Google Scholar 

  10. Young EW. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol. 2013;5(9):1096–109.

    Article  CAS  Google Scholar 

  11. Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 2012;12(6):387–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takeuchi K, Ito F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol Pharm Bull. 2011;34(12):1774–80.

    Article  CAS  PubMed  Google Scholar 

  13. Hunter T, Manning G. The eukaryotic protein kinase superfamily and the emergence of receptor tyrosine kinases, chap 1. In: Wheeler DL, Yarden Y, editors. Receptor tyrosine kinases: structure, functions and role in human. New York: Springer-Verlag; 2015.

  14. Hagel M, Miduturu C, Sheets M, Rubin N, Weng W, Stransky N, et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 2015;5(4):424–37.

    Article  CAS  PubMed  Google Scholar 

  15. Qiu W-H, Zhou B-S, Chu PG, Chen W-G, Chung C, Shih J, et al. Over-expression of fibroblast growth factor receptor 3 in human hepatocellular carcinoma. World J Gastroenterol. 2005;11(34):5266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qiu W, Yang W, Jing X, Wang B, Liu X, Ma D, et al. The phenotypic and signaling consequences of a novel aberrantly spliced transcript of fibroblast growth factor receptor 3 in hepatocellular carcinoma. Cancer Res. 2015;75(15 Supplement):3958.

    Article  Google Scholar 

  17. Qiu W, Zhou B, Chu PG, Luh F, Yen Y. The induction of growth arrest DNA damage-inducible gene 45 β in human hepatoma cell lines by S-adenosylmethionine. Am J Pathol. 2007;171(1):287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang J, Liu W, Guo X, Zhang R, Zhi Q, Ji J, et al. IRX1 influences peritoneal spreading and metastasis via inhibiting BDKRB2-dependent neovascularization on gastric cancer. Oncogene. 2011;30(44):4498–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paur J, Nika L, Maier C, Moscu-Gregor A, Kostka J, Huber D, et al. Fibroblast growth factor receptor 3 isoforms: novel therapeutic targets for hepatocellular carcinoma? Hepatology. 2015;62(6):1767–78.

    Article  CAS  PubMed  Google Scholar 

  20. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.

    Article  CAS  PubMed  Google Scholar 

  21. Yamashita A, Morioka M, Kishi H, Kimura T, Yahara Y, Okada M, et al. Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature. 2014;513(7519):507–11.

    Article  CAS  PubMed  Google Scholar 

  22. Gauglhofer C, Sagmeister S, Schrottmaier W, Fischer C, Rodgarkia-Dara C, Mohr T, et al. Up-regulation of the fibroblast growth factor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis. Hepatology. 2011;53(3):854–64.

    Article  CAS  PubMed  Google Scholar 

  23. Henson B, Gollin S. Overexpression of KLF13 and FGFR3 in oral cancer cells. Cytogenet Genome Res. 2010;128(4):192–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ, et al. In multiple myeloma, t (4; 14)(p16; q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101(4):1520–9.

    Article  CAS  PubMed  Google Scholar 

  25. Paur J, Nika L, Maier C, Moscu-Gregor A, Kostka J, Huber D, et al. Fibroblast growth factor receptor 3 isoforms: novel therapeutic targets for hepatocellular carcinoma? Hepatology. 2015;62:1767–78.

    Article  CAS  PubMed  Google Scholar 

  26. Linnankivi T, Mäkitie O, Valanne L, Toiviainen-Salo S. Neuroimaging and neurological findings in patients with hypochondroplasia and FGFR3 N540 K mutation. Am J Med Genet Part A. 2012;158(12):3119–25.

    Article  CAS  Google Scholar 

  27. Turo R, Harnden P, Thygesen H, Fleischmann A, Thalmann GN, Seiler R, et al. FGFR3 expression in primary invasive bladder cancers and matched lymph node metastases. J Urol. 2015;193(1):325–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Nature Science Foundation of China (30872511) and Shanghai Charity Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiping Yang or Weihua Qiu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or financial disclosures of this study.

Additional information

Xinyu Liu, Xiaoqian Jing and Xi Cheng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

FGFR3 regulated in vitro proliferation of HCC. a The silencing effect of FGFR3 in SMMC-7721 and QGY-7703 cells was confirmed by western blot with 40 ug total protein per well. b The overexpression effect of FGFR3 in SMMC-7721 and QGY-7703 cells was confirmed by western blot with 15 ug total protein per well. *p<0.05 and **p<0.01 (TIFF 2097 kb)

Fig S2

FGFR3 regulated in vivo proliferation of HCC. a Knockdown of FGFR3 inhibited tumor growth in vivo. b The volume of xenografts tumors was measured every 5 days. c Tumor weight was measured after the xenografts tumors were removed. *p<0.05 and **p<0.01 (TIFF 1874 kb)

Fig S3

The effect of FGFR3 overexpression on the proliferation of HUVEC cells. a FGFR3 overexpression in SMMC-7721 cells could significantly increase the proliferation ability of HUVECs while silencing FGFR3 had no significant effect on the proliferation ability of HUVECs. b FGFR3 overexpression in QGY-7703 cells could significantly increase the proliferation ability of HUVECs and silencing FGFR3 impaired the proliferation ability of HUVECs. *p<0.05 and **p<0.01 (TIFF 1327 kb)

Fig S4

Human angiogenesis array. Molecules shown in red were up-regulated in SMMC-7721/FGFR3 group compared with SMMC-7721/NC group. Pos, positive control; Neg, negative control (TIFF 4157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Jing, X., Cheng, X. et al. FGFR3 promotes angiogenesis-dependent metastasis of hepatocellular carcinoma via facilitating MCP-1-mediated vascular formation. Med Oncol 33, 46 (2016). https://doi.org/10.1007/s12032-016-0761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0761-9

Keywords

Navigation