Skip to main content

Advertisement

Log in

Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway

  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer has a high incidence in the world and is becoming a leading cause of death in female patients due to its high metastatic ability. High expression of Notch-1 and its ligand Jagged-1 correlates with poor prognosis in breast cancer. Our previous work has shown that Notch-1 signaling pathway upregulates NF-κB transcriptional activity and induces the adhesion, migration and invasion of human breast cancer cell line MDA-MB-231. However, the role of Notch-1 in NF-κB activation is still poorly understood. Here, we aim to understand the exact mechanism that Notch-1 regulates NF-κB activity. In MDA-MB-231 cells where Notch-1 is constitutively activated, the phosphorylation of p85 and AKT (Tyr308/Ser473) is upregulated, indicating PI3K/AKT pathway is activated. Notch-1 activation caused the increase of PP2A phosphorylation at Tyr307, indicating Notch-1 inhibits PP2A activity. NF-κB transcriptional activity was evaluated by dual-luciferase reporter assay, and the results showed that, while silencing of Notch-1, PP2A activity was upregulated and NF-κB activity was downregulated, whereas PP2A inhibitor okadaic acid (OA) restored NF-κB activity. Immunofluorescence and Western blots showed that OA treatment antagonized the decrease of p65 nuclear translocation caused by Notch-1 silencing. Moreover, OA treatment also upregulated MMP-2, MMP-9 and VEGF mRNA expression levels, indicating OA rescues Notch-1 silencing that caused low cell invasion. Taken together, our results suggest that Notch-1-activating PI3K/AKT/NF-κB pathway is PP2A dependent; PP2A may be a potential therapeutic target in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Zheng R, Zeng H, Zhang S. The updated incidences and mortalities of major cancers in China, 2011. Chin J Cancer. 2015;34(3):53. doi:10.1186/s40880-015-0042-6.

    Article  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi:10.3322/caac.21254.

    Article  PubMed  Google Scholar 

  3. Boggs AE, Vitolo MI, Whipple RA, Charpentier MS, Goloubeva OG, Ioffe OB, et al. alpha-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res. 2015;75(1):203–15. doi:10.1158/0008-5472.CAN-13-3563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65(18):8530–7. doi:10.1158/0008-5472.CAN-05-1069.

    Article  CAS  PubMed  Google Scholar 

  5. Bajaj J, Maliekal TT, Vivien E, Pattabiraman C, Srivastava S, Krishnamurthy H, et al. Notch signaling in CD66+ cells drives the progression of human cervical cancers. Cancer Res. 2011;71(14):4888–97. doi:10.1158/0008-5472.CAN-11-0543.

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Tan J, Zhang Y, Han N, Di X, Xiao T, et al. DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on Notch signaling. PLoS ONE. 2014;9(3):e91509. doi:10.1371/journal.pone.0091509.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66(3):1517–25. doi:10.1158/0008-5472.CAN-05-3054.

    Article  CAS  PubMed  Google Scholar 

  8. Zardawi SJ, Zardawi I, McNeil CM, Millar EK, McLeod D, Morey AL, et al. High Notch1 protein expression is an early event in breast cancer development and is associated with the HER-2 molecular subtype. Histopathology. 2010;56(3):286–96. doi:10.1111/j.1365-2559.2009.03475.x.

    Article  PubMed  Google Scholar 

  9. Ai Q, Ma X, Huang Q, Liu S, Shi T, Zhang C, et al. High-level expression of Notch1 increased the risk of metastasis in T1 stage clear cell renal cell carcinoma. PLoS ONE. 2012;7(4):e35022. doi:10.1371/journal.pone.0035022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, Ahn Y-H, Gibbons DL, Zang Y, Lin W, Thilaganathan N, et al. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200–dependent pathway in mice. J Clin Invest. 2011;121(4):1373–85. doi:10.1172/jci42579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet. 2012;13(9):654–66. doi:10.1038/nrg3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song LL, Peng Y, Yun J, Rizzo P, Chaturvedi V, Weijzen S, et al. Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene. 2008;27(44):5833–44. doi:10.1038/onc.2008.190.

    Article  CAS  PubMed  Google Scholar 

  13. Ghorpade DS, Kaveri SV, Bayry J, Balaji KN. Cooperative regulation of NOTCH1 protein-phosphatidylinositol 3-kinase (PI3K) signaling by NOD1, NOD2, and TLR2 receptors renders enhanced refractoriness to transforming growth factor-beta (TGF-beta)- or cytotoxic T-lymphocyte antigen 4 (CTLA-4)-mediated impairment of human dendritic cell maturation. J Biol Chem. 2011;286(36):31347–60. doi:10.1074/jbc.M111.232413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal. 2014;26(1):149–61. doi:10.1016/j.cellsig.2013.09.021.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, et al. Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J Cell Biochem. 2011;112(1):78–88. doi:10.1002/jcb.22770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cornejo MG, Mabialah V, Sykes SM, Khandan T, Lo Celso C, Lopez CK, et al. Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification. Blood. 2011;118(5):1264–73. doi:10.1182/blood-2011-01-328567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J Cell Biochem. 2010;109(4):726–36. doi:10.1002/jcb.22451.

    CAS  PubMed  Google Scholar 

  18. Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, et al. Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma. Nature. 2009;462(7269):104–7. doi:10.1038/nature08462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–97. doi:10.1038/sj.onc.1204535.

    Article  CAS  PubMed  Google Scholar 

  20. Santini D, Schiavon G, Vincenzi B, Gaeta L, Pantano F, Russo A, et al. Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS ONE. 2011;6(4):e19234. doi:10.1371/journal.pone.0019234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fujiwara Y, Shiba H, Iwase R, Haruki K, Furukawa K, Uwagawa T, et al. Inhibition of nuclear factor κ-B enhances the antitumor effect of combination treatment with tumor necrosis factor-alpha gene therapy and gemcitabine for pancreatic cancer in mice. J Am Coll Surg. 2013;216(2):320–32. doi:10.1016/j.jamcollsurg.2012.09.016.

    Article  PubMed  Google Scholar 

  22. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, et al. Targeting the NF-κB signaling pathway in Notch1-induced T-cell leukemia. Nat Med. 2007;13(1):70–7. doi:10.1038/nm1524.

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Zhao F, Lu J, Li T, Yang H, Wu C, et al. Notch-1 signaling promotes the malignant features of human breast cancer through NF-κB activation. PLoS ONE. 2014;9(4):e95912. doi:10.1371/journal.pone.0095912.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bassères DS, Baldwin AS. Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene. 2006;25(51):6817–30. doi:10.1038/sj.onc.1209942.

    Article  PubMed  Google Scholar 

  25. Shao N, Lu Z, Zhang Y, Wang M, Li W, Hu Z, et al. Interleukin-8 upregulates integrin beta3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-κB pathway. Cancer Lett. 2015;364(2):165–72. doi:10.1016/j.canlet.2015.05.009.

    Article  CAS  PubMed  Google Scholar 

  26. Akca H, Demiray A, Tokgun O, Yokota J. Invasiveness and anchorage independent growth ability augmented by PTEN inactivation through the PI3K/AKT/NFkB pathway in lung cancer cells. Lung Cancer. 2011;73(3):302–9. doi:10.1016/j.lungcan.2011.01.012.

    Article  PubMed  Google Scholar 

  27. Chen HF, Mai JR, Wan JX, Gao YF, Lin LN, Wang SZ, et al. Role of a novel functional variant in the PPP2R1A promoter on the regulation of PP2A-Aalpha and the risk of hepatocellular carcinoma. PLoS ONE. 2013;8(3):e59574. doi:10.1371/journal.pone.0059574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kar S, Palit S, Ball WB, Das PK. Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis. 2012;17(7):735–47. doi:10.1007/s10495-012-0715-4.

    Article  CAS  PubMed  Google Scholar 

  29. Ito-Kureha T, Koshikawa N, Yamamoto M, Semba K, Yamaguchi N, Yamamoto T, et al. Tropomodulin 1 expression driven by NF-κB enhances breast cancer growth. Cancer Res. 2015;75(1):62–72. doi:10.1158/0008-5472.CAN-13-3455.

    Article  CAS  PubMed  Google Scholar 

  30. Stoeck A, Lejnine S, Truong A, Pan L, Wang H, Zang C, et al. Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discov. 2014;4(10):1154–67. doi:10.1158/2159-8290.CD-13-0830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE. 2006;357:re13. doi:10.1126/stke.3572006re13.

    Google Scholar 

  32. Khan GN, Gorin MA, Rosenthal D, Pan Q, Bao LW, Wu ZF, et al. Pomegranate fruit extract impairs invasion and motility in human breast cancer. Integr Cancer Ther. 2009;8(3):242–53. doi:10.1177/1534735409341405.

    Article  CAS  PubMed  Google Scholar 

  33. Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005;8(3):179–83. doi:10.1016/j.ccr.2005.08.008.

    Article  CAS  PubMed  Google Scholar 

  34. Deng L, Chen J, Zhong XR, Luo T, Wang YP, Huang HF, et al. Correlation between activation of PI3K/AKT/mTOR pathway and prognosis of breast cancer in Chinese women. PLoS ONE. 2015;10(3):e0120511. doi:10.1371/journal.pone.0120511.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stal O, Perez-Tenorio G, Akerberg L, Olsson B, Nordenskjold B, Skoog L, et al. Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res. 2003;5(2):R37–44. doi:10.1186/bcr569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501. doi:10.1038/nrc839.

    Article  CAS  PubMed  Google Scholar 

  37. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-κ B through utilization of the Iκ B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem. 2001;276(22):18934–40. doi:10.1074/jbc.M101103200.

    Article  CAS  PubMed  Google Scholar 

  38. Cohen PT. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci. 1997;22(7):245–51.

    Article  CAS  PubMed  Google Scholar 

  39. Hahn K, Miranda M, Francis VA, Vendrell J, Zorzano A, Teleman AA. PP2A regulatory subunit PP2A-B’ counteracts S6 K phosphorylation. Cell Metab. 2010;11(5):438–44. doi:10.1016/j.cmet.2010.03.015.

    Article  CAS  PubMed  Google Scholar 

  40. Barisic S, Schmidt C, Walczak H, Kulms D. Tyrosine phosphatase inhibition triggers sustained canonical serine-dependent NFκB activation via Src-dependent blockade of PP2A. Biochem Pharmacol. 2010;80(4):439–47. doi:10.1016/j.bcp.2010.04.028.

    Article  CAS  PubMed  Google Scholar 

  41. Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IκB kinase activity through IKKbeta subunit phosphorylation. Science. 1999;284(5412):309–13.

    Article  CAS  PubMed  Google Scholar 

  42. Witt J, Barisic S, Schumann E, Allgower F, Sawodny O, Sauter T, et al. Mechanism of PP2A-mediated IKK beta dephosphorylation: a systems biological approach. BMC Syst Biol. 2009;3:71. doi:10.1186/1752-0509-3-71.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ping Tang and Dr. Chao Feng for the assistance with the manuscript and valuable advice and Juan Lu who provided experimental assistance. This work was supported, in whole or in part, by the National Natural Science Foundation of China (11272083, 81201192, 81101147, 31470906, 31470959, 81471785, and 11502049) and the Sichuan Youth Science and Technology Foundation of China (2014JQ0008, 2010JQ0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, J., Xiong, N. et al. Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway. Med Oncol 33, 33 (2016). https://doi.org/10.1007/s12032-016-0747-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0747-7

Keywords

Navigation