Skip to main content

Advertisement

Log in

Effects of X-radiation on lung cancer cells: the interplay between oxidative stress and P53 levels

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Lung cancer (LC) ranks as the most prevalent and deadliest cause of cancer death worldwide. Treatment options include surgery, chemotherapy and/or radiotherapy, depending on LC staging, without specific highlight. The aim was to evaluate the effects of X-radiation in three LC cell lines. H69, A549 and H1299 cell lines were cultured and irradiated with 0.5–60 Gy of X-radiation. Cell survival was evaluated by clonogenic assay. Cell death and the role of reactive oxygen species, mitochondrial membrane potential, BAX, BCL-2 and cell cycle were analyzed by flow cytometry. Total and phosphorylated P53 were assessed by western blotting. Ionizing radiation decreases cell proliferation and viability in a dose-, time- and cell line-dependent manner, inducing cell death preferentially by apoptosis with cell cycle arrest. These results may be related to differences in P53 expression and oxidative stress response. The results obtained indicate that sensibility and/or resistance to radiation may be dependent on molecular LC characteristics which could influence response to radiotherapy and treatment success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dela CS, Cruz LT, Tanoue RA. Matthay, Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32:605–44. doi:10.1016/j.ccm.2011.09.001.

    Article  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. doi:10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  3. Mendes F, Antunes C, Abrantes AM, Gonçalves A, Nobre-Gois I, Sarmento-Ribeiro AB, et al. Lung cancer: the immune system and radiation. Br J Biomed Sci. 2015;72:78–84.

    CAS  PubMed  Google Scholar 

  4. Rosell R, Karachaliou N. Lung cancer in 2014: optimizing lung cancer treatment approaches. Nat Rev Clin Oncol. 2014;12(2014):75–6. doi:10.1038/nrclinonc.2014.225.

    Article  PubMed  Google Scholar 

  5. Verma V. Lung cancer: implementing lung-cancer screening-oncological “grey areas”. Nat Rev Clin Oncol. 2015;12:256–7. doi:10.1038/nrclinonc.2015.65.

    Article  PubMed  Google Scholar 

  6. Muaddi H, Chowdhury S, Vellanki R, Zamiara P, Koritzinsky M. Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin. Radiother Oncol. 2013;108:446–50. doi:10.1016/j.radonc.2013.06.014.

    Article  CAS  PubMed  Google Scholar 

  7. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70. doi:10.1038/nrc3711.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lee YS, Oh J-HH, Yoon S, Kwon M-SS, Song C-WW, Kim K-HH, et al. Differential gene expression profiles of radioresistant non-small-cell lung cancer cell lines established by fractionated irradiation: tumor protein p53-inducible protein 3 confers sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys. 2010;77:858–66. doi:10.1016/j.ijrobp.2009.12.076.

    Article  CAS  PubMed  Google Scholar 

  9. Stuschke M, Sak A, Wurm R, Sinn B, Wolf G, Stüben G, et al. Radiation-induced apoptosis in human non-small-cell lung cancer cell lines is secondary to cell-cycle progression beyond the G2-phase checkpoint. Int J Radiat Biol. 2002;78:807–19. doi:10.1080/0955300021014890.

    Article  CAS  PubMed  Google Scholar 

  10. Andreo P, Burns DT, Hohlfeld S, Huq MS, Kanai T, Laitano F, et al. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Vienna: IAEA; 2011.

    Google Scholar 

  11. Gibbons JP. Monitor unit calculations for external photon and electron beams. In: AAPM annual meeting refresher course, Salt Lake City; 2001. p. 1–10.

  12. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9. doi:10.1038/nprot.2006.339.

    Article  CAS  PubMed  Google Scholar 

  13. Abrantes AM, Serra MES, Gonçalves AC, Rio J, Oliveiros B, Laranjo M, et al. Hypoxia-induced redox alterations and their correlation with 99mTc-MIBI and 99mTc-HL-91 uptake in colon cancer cells. Nucl Med Biol. 2010;37:125–32. doi:10.1016/j.nucmedbio.2009.11.001.

    Article  CAS  PubMed  Google Scholar 

  14. Mamede AC, Pires AS, Abrantes AM, Tavares SD, Gonçalves AC, Casalta-Lopes JE, et al. Cytotoxicity of ascorbic acid in a human colorectal adenocarcinoma cell line (WiDr): in vitro and in vivo studies. Nutr Cancer. 2012;64:1049–57. doi:10.1080/01635581.2012.713539.

    Article  CAS  PubMed  Google Scholar 

  15. Serra AC, RochaGonsalves AMDA, Laranjo M, Abrantes AM, Gonçalves AC, Sarmento-Ribeiro AB, et al. Synthesis of new 2-galactosylthiazolidine-4-carboxylic acid amides. Antitumor evaluation against melanoma and breast cancer cells. Eur J Med Chem. 2012;53:398–402. doi:10.1016/j.ejmech.2012.04.003.

    Article  CAS  PubMed  Google Scholar 

  16. Sales TLF. Efeitos da radiação ionizante em linhas celulares de cancro do pulmão de não pequenas células: estudos in vitro. Coimbra: University of Coimbra; 2014.

    Google Scholar 

  17. Gonçalves AC, Alves V, Silva T, Carvalho C, De Oliveira CR, Sarmento-Ribeiro AB. Oxidative stress mediates apoptotic effects of ascorbate and dehydroascorbate in human Myelodysplasia cells in vitro. Toxicol Vitr. 2013;27:1542–9. doi:10.1016/j.tiv.2013.03.009.

    Article  Google Scholar 

  18. Almeida S, Sarmento-ribeiro AB, Januário C, Rego AC, Oliveira CR. Evidence of apoptosis and mitochondrial abnormalities in peripheral blood cells of Huntington’ s disease patients. Biochem Biophys Res Commun. 2008;374:599–603. doi:10.1016/j.bbrc.2008.07.009.

    Article  CAS  PubMed  Google Scholar 

  19. Santos K, Laranjo M, Abrantes AM, Brito AF, Gonçalves C, Sarmento Ribeiro AB, et al. Targeting triple-negative breast cancer cells with 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazoles. Eur J Med Chem. 2014;79:273–81. doi:10.1016/j.ejmech.2014.04.008.

    Article  CAS  PubMed  Google Scholar 

  20. Han JY, Chung YJ, Park SW, Kim JS, Rhyu MG, Kim HK, et al. The relationship between cisplatin-induced apoptosis and p53, bcl-2 and bax expression in human lung cancer cells. Korean J Intern Med. 1999;14:42–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lien J-C, Huang C-C, Lu T-J, Tseng C-H, Sung P-J, Lee H-Z, et al. Naphthoquinone derivative PPE8 induces endoplasmic reticulum stress in p53 null H1299 cells. Oxid Med Cell Longev. 2015;2015:453679. doi:10.1155/2015/453679.

    PubMed Central  PubMed  Google Scholar 

  22. Würtzen PA, Pedersen LO, Poulsen HS, Claesson MH. Specific killing of P53 mutated tumor cell lines by a cross-reactive human HLA-A2-restricted P53-specific CTL line. Int J Cancer. 2001;93:855–61.

    Article  PubMed  Google Scholar 

  23. Balça-Silva J, Neves SS, Gonçalves AC, Abrantes AM, Casalta-Lopes J, Botelho MF, et al. Effect of miR-34b overexpression on the radiosensitivity of non-small cell lung cancer cell lines. Anticancer Res. 2012;32:1603–10.

    PubMed  Google Scholar 

  24. Chen X, Liao C, Chu Q, Zhou G, Lin X, Li X, et al. Dissecting the molecular mechanism of ionizing radiation-induced tissue damage in the feather follicle. PLoS ONE. 2014;9:e89234. doi:10.1371/journal.pone.0089234.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40. doi:10.1016/j.cbi.2005.12.009.

    Article  CAS  PubMed  Google Scholar 

  26. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1005–28. doi:10.1164/rccm.2206007.

    CAS  PubMed  Google Scholar 

  27. Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, et al. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med. 2012;53:260–70. doi:10.1016/j.freeradbiomed.2012.04.033.

    Article  CAS  PubMed  Google Scholar 

  28. Montero J, Dutta C, van Bodegom D, Weinstock D, Letai A. p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ. 2013;20:1465–74. doi:10.1038/cdd.2013.52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lao-Sirieix P, Brais R, Lovat L, Coleman N, Fitzgerald RC. Cell cycle phase abnormalities do not account for disordered proliferation in Barrett’s carcinogenesis. Neoplasia. 2004;6:751–60. doi:10.1593/neo.04280.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gadhikar MA, Sciuto MR, Alves MVO, Pickering CR, Osman AA, Neskey DM, et al. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther. 2013;12:1860–73. doi:10.1158/1535-7163.MCT-13-0157.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yang L, Zhou Y, Li Y, Zhou J, Wu Y, Cui Y, et al. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett. 2014;. doi:10.1016/j.canlet.2014.12.003.

    Google Scholar 

  32. Holbrook LAC, Butler RA, Cashon RE, Van Beneden RJ. Soft-shell clam (Mya arenaria) p53: a structural and functional comparison to human p53. Gene. 2009;433:81–7. doi:10.1016/j.gene.2008.11.029.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. She QB, Bode AM, Ma WY, Chen NY, Dong Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res. 2001;61:1604–10.

    CAS  PubMed  Google Scholar 

  34. Wu GS. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther. 2004;3:156–61.

    Article  CAS  PubMed  Google Scholar 

  35. Henness S, Davey MW, Harvie RM, Davey RA. Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase IIalpha expression. Int J Radiat Oncol Biol Phys. 2002;54:895–902. doi:10.1016/S0360-3016(02)03037-7.

    Article  CAS  PubMed  Google Scholar 

  36. Frutuoso C, Silva M, Amaral N. Valor prognóstico das proteínas p53, C-erB-2 E Ki67 no carcinoma do ovário. Acta Med Port. 2001;14:277–83.

    CAS  PubMed  Google Scholar 

  37. Sousa H, Santos AM, Pinto D, Medeiros R. Is there a biological plausability for p53 codon 72 polymorphism influence on cervical cancer development? Acta Med Port. 2011;24:127–34.

    CAS  PubMed  Google Scholar 

  38. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003;22:9030–40. doi:10.1038/sj.onc.1207116.

    Article  CAS  PubMed  Google Scholar 

  39. She Q, Bode AM, Ma W. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. 2001;1604–1610.

  40. Duarte RLDM, Paschoal MEM. Marcadores moleculares no câncer de pulmão: papel prognóstico e sua relação com o tabagismo. J Bras Pneumol. 2006;32:56–65. doi:10.1590/S1806-37132006000100012.

    Article  PubMed  Google Scholar 

  41. Abrantes A. Hipóxia Tumoral - Metabonómica e Imagem, Estudo Experimental. Coimbra: University of Coimbra; 2013.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Portuguese Foundation for Science and Technology for the award Portugal (Strategic Project PEst-C/SAU/UI3282/2013 and UID/NEU/04539/2013), COMPETE-FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Mendes.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, F., Sales, T., Domingues, C. et al. Effects of X-radiation on lung cancer cells: the interplay between oxidative stress and P53 levels. Med Oncol 32, 266 (2015). https://doi.org/10.1007/s12032-015-0712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0712-x

Keywords

Navigation