Skip to main content

Advertisement

Log in

Sonic hedgehog–Gli1 signals promote epithelial–mesenchymal transition in ovarian cancer by mediating PI3K/AKT pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Epithelial–mesenchymal transition (EMT) has been reported to play an important role in distant metastasis in cancer-related disease. A large number of studies have shown that sonic hedgehog–glioma-associated oncogene 1 (Shh–Gli1) signals participate in the process of EMT; however, the role and mechanism of Shh–Gli1 signals in the progression of EMT in ovarian cancer remain largely unknown. First, we investigated the occurrence of EMT and invasion and migration ability in ovarian cancer cells stimulated by different concentration of Shh–Gli1 signals agonist purmorphamine in vitro. Then, Akt siRNA was transfected into ovarian cancer cells which already stimulated by purmorphamine to elucidate the molecular mechanism underlying the pathogenesis of EMT in ovarian cancer. Gli1 expression was significantly enhanced in ovarian cancer cells after stimulated by purmorphamine. In addition, Gli1 up-regulation promoted EMT, invasion and migration ability of ovarian cancer cells. Furthermore, we validated a cross talk between Shh–Gli1 signals and PI3K–Akt pathway in the occurrence of EMT in ovarian cancer cells. These findings revealed a novel role for Shh–Gli1 signals in EMT in ovarian cancer and provided for us a potential therapeutic target for the suppression of EMT, invasion and metastasis in ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY, Thiery JP. Epithelial–mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med. 2014;6(10):1279–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Wang Y, Hu C, Dong R, Huang X, Qiu H. Platelet-derived growth factor-D promotes ovarian cancer invasion by regulating matrix metalloproteinases 2 and 9. Asian Pac J Cancer Prev. 2011;12(12):3367–70.

    PubMed  Google Scholar 

  3. Wang Y, Ma J, Shen H, Wang C, Sun Y, Howell SB, Lin X. Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway. Oncol Rep. 2014;32(5):2150–8.

    CAS  PubMed  Google Scholar 

  4. Wang WS, Yang XS, Xia M, Jiang HY, Hou JQ. Silencing of twist expression by RNA interference suppresses epithelial–mesenchymal transition, invasion, and metastasis of ovarian cancer. Asian Pac J Cancer Prev. 2012;13(9):4435–9.

    Article  PubMed  Google Scholar 

  5. Law AY, Wong CK. Stanniocalcin-2 promotes epithelial–mesenchymal transition and invasiveness in hypoxic human ovarian cancer cells. Exp Cell Res. 2010;316(20):3425–34.

    Article  CAS  PubMed  Google Scholar 

  6. Yun SJ, Kim WJ. Role of the epithelial–mesenchymal transition in bladder cancer: from prognosis to therapeutic target. Korean J Urol. 2013;54(10):645–50.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Xu X, Su B, Xie C, Wei S, Zhou Y, Liu H, Dai W, Cheng P, Wang F, Xu X, Guo C. Sonic hedgehog–Gli1 signaling pathway regulates the epithelial mesenchymal transition (EMT) by mediating a new target gene, S100A4, in pancreatic cancer cells. PLoS One. 2014;9(7):e96441.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sun XD, Liu XE, Huang DS. Curcumin reverses the epithelial–mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. Oncol Rep. 2013;29(6):2401–7.

    CAS  PubMed  Google Scholar 

  9. Clark AR, Toker A. Signalling specificity in the Akt pathway in breast cancer. Biochem Soc Trans. 2014;42(5):1349–55.

    Article  CAS  PubMed  Google Scholar 

  10. Xu X, Zhou Y, Xie C, Wei SM, Gan H, He S, Wang F, Xu L, Lu J, Dai W, He L, Chen P, Wang X, Guo C. Genome-wide screening reveals an EMT molecular network mediated by sonic hedgehog–Gli1 signaling in pancreatic cancer cells. PLoS One. 2012;7(8):e43119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wang ZM, Lu YK, Han Y, Jiang JY, Yuan XD. Dipeptidyl peptidase IV gene expression in ovarian carcinoma cell lines with various malignant behaviour. Acta Academiae Medicinae Sinicae. 2005;27(2):205–10.

    CAS  PubMed  Google Scholar 

  12. Hua F, Xia Y, Wang H, Chen R, Ren Y, Yang J, Liang W. Effects of small interfering RNA silencing MACC-1 expression on cell proliferation, cell cycle and invasion ability of cervical cancer SiHa cells. Zhonghua Zhong Liu Za Zhi. 2014;36(7):496–500.

    PubMed  Google Scholar 

  13. Wolff F, Loipetzberger A, Gruber W, Esterbauer H, Aberger F, Frischauf AM. Imiquimod directly inhibits Hedgehog signalling by stimulating adenosine receptor/protein kinase A-mediated GLI phosphorylation. Oncogene. 2013;32(50):5574–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Davidson B, Rosenfeld YB, Holth A, Hellesylt E, Tropé CG, Reich R, Yisraeli JK. VICKZ2 protein expression in ovarian serous carcinoma effusions is associated with poor survival. Hum Pathol. 2014;45(7):1520–8.

    Article  CAS  PubMed  Google Scholar 

  15. Oue T, Uehara S, Yamanaka H, Nomura M, Usui N. Hedgehog signal inhibitors suppress the invasion of human rhabdomyosarcoma cells. Pediatr Surg Int. 2013;29(11):1153–8.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Javelaud D, Pierrat MJ, Mauviel A. Crosstalk between TGF-β and hedgehog signaling in cancer. FEBS Lett. 2012;586(14):2016–25.

    Article  CAS  PubMed  Google Scholar 

  17. Yanai K, Nakamura M, Akiyoshi T, Nagai S, Wada J, Koga K, Noshiro H, Nagai E, Tsuneyoshi M, Tanaka M, Katano M. Crosstalk of hedgehog and Wnt pathways in gastric cancer. Cancer Lett. 2008;263(1):145–56.

    Article  CAS  PubMed  Google Scholar 

  18. Min S, Xiaoyan X, Fanghui P, Yamei W, Xiaoli Y, Feng W. The glioma-associated oncogene homolog 1 promotes epithelial–mesenchymal transition in human esophageal squamous cell cancer by inhibiting E-cadherin via snail. Cancer Gene Ther. 2013;20(7):379–85.

    Article  CAS  PubMed  Google Scholar 

  19. Busch EL, McGraw KA, Sandler RS. The potential for markers of epithelial–mesenchymal transition to improve colorectal cancer outcomes: a systematic review. Cancer Epidemiol Biomark Prev. 2014;23(7):1164–75.

    Article  CAS  Google Scholar 

  20. Xuan X, Zeng Q, Li Y, Gao Y, Wang F, Zhang H, Wang Z, He H, Li S. Akt-mediated transforming growth factor-β1-induced epithelial–mesenchymal transition in cultured human esophageal squamous cancer cells. Cancer Gene Ther. 2014;21(6):238–45.

    Article  CAS  PubMed  Google Scholar 

  21. Kuo SZ, Blair KJ, Rahimy E, Kiang A, Abhold E, Fan JB, Wang-Rodriguez J, Altuna X, Ongkeko WM. Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt. BMC Cancer. 2012;12:556–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interests. The authors have no commercial interest in any materials discussed in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xiaojing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, Z., Caiping, S., Qing, Z. et al. Sonic hedgehog–Gli1 signals promote epithelial–mesenchymal transition in ovarian cancer by mediating PI3K/AKT pathway. Med Oncol 32, 368 (2015). https://doi.org/10.1007/s12032-014-0368-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0368-y

Keywords

Navigation