Skip to main content

Advertisement

Log in

Triple-negative breast cancer: future prospects in diagnosis and management

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype comprising about 10–20 % of breast cancer patients with an overall poor prognosis. Recently, it was found to be a heterogeneous disease that has been classified into six subtypes based on molecular signature. In preclinical trials, these subtypes have different active signaling pathways with variable response to chemotherapy. To improve treatment outcome of TNBC, therapy should be tailored according to the active driving signaling aberration. Molecular testing represents the optimal way to stratify patients, but it has some difficulties to be implemented in routine clinical practice. This article provides an assumption for stepped diagnostic algorithm of TNBC based on immunohistochemistry markers in addition to a suggested tailored therapeutic strategy for advanced TNBC based on the driving aberrations. Furthermore, most TNBC patients develop early relapse despite adjuvant chemotherapy. We provide a design for future adjuvant therapy for the disease. This design is based on targeting proposed active pathways in breast cancer stem cells responsible for regenerating the tumor and disease relapse. Finally, we provide a proposed design for future clinical trials in TNBC to allow for investigation of different medications in this heterogeneous disease based on upfront patient stratification and then allocation to the suitable treatment arms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carey L, Winer E, Viale G, et al. Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol. 2010;7:683–92.

    Article  PubMed  Google Scholar 

  2. Dent R, Trudeau M, Pritchard K, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  3. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.

    Article  CAS  PubMed  Google Scholar 

  4. Peddi PF, Ellis MJ, Ma C. Molecular basis of triple negative breast cancer and implications for therapy. Int J Breast Cancer. 2012:217185, 1–7.

    Google Scholar 

  5. Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121(7):2750–67.

    Article  CAS  PubMed  Google Scholar 

  6. Bauer JA, Chakravarthy AB, Rosenbluth JM, et al. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin Cancer Res. 2010;16(2):681–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fasching PA, Heusinger K, Haeberle L, et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer. 2011;11:486.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Adamo B, Anders CK. Stratifying triple-negative breast cancer: which definition(s) to use? Breast Cancer Res. 2011;13:105.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sanchez CG, Ma CX, Crowder RJ, et al. Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Res. 2011;13:R21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tutt A, Robson M, Garber JE, et al. Oral poly(ADPribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of concept trial. Lancet. 2010;376(9737):235–44.

    Article  CAS  PubMed  Google Scholar 

  11. Ibrahim Y, Garcia C, Serra V, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2012;2:1036–47.

    Article  CAS  PubMed  Google Scholar 

  12. Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26:3785–90.

    Article  CAS  PubMed  Google Scholar 

  13. Lord CJ, Garrett MD, Ashworth A. Targeting the double-strand DNA break repair pathway as a therapeutic strategy. Clin Cancer Res. 2006;12:4463–8.

    Article  CAS  PubMed  Google Scholar 

  14. Juvekar A, Burga LN, Hu H, et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2012;2:1048–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Collins LC, Cole K, Marotti J, et al. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol. 2011;24(7):924–31.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121(7):2750–67.

    Article  CAS  PubMed  Google Scholar 

  17. Lehmann BD, Bauer JA, Schafer JM, et al. Targeted inhibition of recurrent PIK3CA mutations synergizes with bicalutamide in AR-expressing triple negative breast cancer. Cancer Res. 2012;72(24 Suppl 3): Abstract P6-05-03.

  18. King TD, Suto MJ, Li Y. The Wnt/β-catenin signalling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem. 2012;113:13–8.

    Article  CAS  PubMed  Google Scholar 

  19. Yang L, Kim C, Yen Y. FZD7 in triple negative breast cancer cells. In: Mehmet Gunduz, editor. Breast cancer—carcinogenesis, cell growth and signalling pathways. Shanghai: InTech; 2011. p. 551–62.

  20. Yang L, Wu X, Wang Y, et al. FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene. 2011;43:4437–46.

    Article  Google Scholar 

  21. Rey JP, Ellies DL. Wnt modulators in the biotech pipeline. Dev Dyn. 2010;239(1):102–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Liu J, Pan S, Sun F, et al. Targeting porcupine, a critical node for Wnt signalling in cancer. Cancer Res. 2011;71(24 Suppl 3):Abstract PD08-11.

  23. Finn RS. Targeting Src in breast cancer. Ann Oncol. 2008;19:1379–86.

    Article  CAS  PubMed  Google Scholar 

  24. Finn RS, Dering J, Ginther C, et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/triple-negative breast cancer cell lines growing in vitro. Breast Cancer Res Treat. 2007;105(3):319–26.

    Article  CAS  PubMed  Google Scholar 

  25. Tryfonopoulos D, Walsh S, Collins DM, et al. Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol. 2011;22(10):2234–40.

    Article  CAS  PubMed  Google Scholar 

  26. Huang F, Reeves K, Han X, et al. Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res. 2007;67:2226–38.

    Article  CAS  PubMed  Google Scholar 

  27. Rugo H, Keck S. Reversing hormone resistance: have we found the golden key? JCO. 2012;30:22.

    Google Scholar 

  28. Deonarain MP, Kousparou C, Epenetos A. Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs. 2009;1(1):12–25.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Yu X, Lin Y, Yan X, et al. CD133, stem cells, and cancer stem cells: myth or reality? Curr Colorectal Cancer Rep. 2011;7:253–9.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lu D, Choi M, Yu J, et al. Salinomycin inhibits Wnt signalling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci USA. 2011;108:13253–7.

    Article  CAS  PubMed  Google Scholar 

  31. Tang QL, Zhao ZQ, Li JC, et al. Salinomycin inhibits osteosarcoma by targeting its tumor stem cells. Cancer Lett. 2011;311(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  32. Martelli AM, Evangelisti C, Chiarini F, et al. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cell biology. Cancers. 2010;2:1576–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dubrovska A, Kim S, Salamone RJ, et al. The role of PTEN/Akt/PI3K signalling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci. 2009;106:268–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mian Usman Farooq for his technical support in the preparation of the figures of the manuscript.

Conflict of interest

The authors declared that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shereef Elsamany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsamany, S., Abdullah, S. Triple-negative breast cancer: future prospects in diagnosis and management. Med Oncol 31, 834 (2014). https://doi.org/10.1007/s12032-013-0834-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0834-y

Keywords

Navigation