Skip to main content

Advertisement

Log in

High expression of PRDM14 correlates with cell differentiation and is a novel prognostic marker in resected non-small cell lung cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

PR (PRDI-BF1 and RIZ) domain containing proteins (PRDM) have been indicated to play important roles in several human cancers. The objectives of this study were to determine the frequency and prognostic significance of PRDM1 and PRDM14 expression in a cohort of surgically resected non-small cell lung cancer (NSCLC) patients. Immunohistochemistry and Western blotting was used to detect the expression status of PRDM1 in primary tumors and PRDM14 for both primary lung cancers and matched lymph node metastases. Univariate and multivariate analysis were performed to determine the association between PRDM expression and prognosis. PRDM1 expression was observed in all NSCLC patients’ tumor samples. PRDM14 was found to be increased expression in 35.65 % cases (46/129) for primary tumors and 39.68 % cases (25/63) for paired metastatic lymph nodes. Increased expression of PRDM14 correlated with differentiation of tumor cells significantly (P = 0.008). Western blotting analysis verified that PRDM14 associated with cell differentiation in NSCLC. The overall survival rates of patients with high PRDM14 expression and low PRDM14 expression were 41.30 and 65.06 %, respectively (hazard ratio: 3.051, 95 % CI: 1.752, 5.312, P < 0.0001). The progression-free survival rates were 34.78 % for patients in the high expression group and 59.03 % for patients in the low OLC1 expression group (hazard ratio: 2.775, 95 % CI: 1.648, 4.675, P < 0.0001). Thus, our study showed that increased expression of PRDM14 correlated with cell differentiation of NSCLC cells. PRDM14 was a potential biomarker for predicting unfavorable prognosis in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29. doi:10.3322/caac.20138.

    Article  PubMed  Google Scholar 

  2. Esteller M. Epigenetics in cancer. New Engl J Med. 2008;358(11):1148–59. doi:10.1056/NEJMra072067.

    Article  PubMed  CAS  Google Scholar 

  3. Risch A, Plass C. Lung cancer epigenetics and genetics. Int J Cancer J Int Du Cancer. 2008;123(1):1–7. doi:10.1002/ijc.23605.

    Article  CAS  Google Scholar 

  4. Bannister AJ, Kouzarides T. Reversing histone methylation. Nature. 2005;436(7054):1103–6. doi:10.1038/nature04048.

    Article  PubMed  CAS  Google Scholar 

  5. Bikoff EK, Robertson EJ. One PRDM is not enough for germ cell development. Nat Genet. 2008;40(8):934–5. doi:10.1038/ng0808-934.

    Article  PubMed  CAS  Google Scholar 

  6. Fog CK, Galli GG, Lund AH. PRDM proteins: important players in differentiation and disease. BioEssays News Rev Mol Cell Dev Biol. 2012;34(1):50–60. doi:10.1002/bies.201100107.

    Article  CAS  Google Scholar 

  7. Kurimoto K, Yamaji M, Seki Y, Saitou M. Specification of the germ cell lineage in mice: a process orchestrated by the PR-domain proteins, Blimp1 and Prdm14. Cell Cycle. 2008;7(22):3514–8.

    Article  PubMed  CAS  Google Scholar 

  8. Tsuneyoshi N, Sumi T, Onda H, Nojima H, Nakatsuji N, Suemori H. PRDM14 suppresses expression of differentiation marker genes in human embryonic stem cells. Biochem Biophys Res Commun. 2008;367(4):899–905. doi:10.1016/j.bbrc.2007.12.189.

    Article  PubMed  CAS  Google Scholar 

  9. John SA, Garrett-Sinha LA. Blimp1: a conserved transcriptional repressor critical for differentiation of many tissues. Exp Cell Res. 2009;315(7):1077–84. doi:10.1016/j.yexcr.2008.11.015.

    Article  PubMed  CAS  Google Scholar 

  10. Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood. 2006;107(10):4090–100. doi:10.1182/blood-2005-09-3778.

    Article  PubMed  CAS  Google Scholar 

  11. Struski S, Doco-Fenzy M, Cornillet-Lefebvre P. Compilation of published comparative genomic hybridization studies. Cancer Genet Cytogenet. 2002;135(1):63–90.

    Article  PubMed  CAS  Google Scholar 

  12. Nishikawa N, Toyota M, Suzuki H, Honma T, Fujikane T, Ohmura T, et al. Gene amplification and overexpression of PRDM14 in breast cancers. Cancer Res. 2007;67(20):9649–57. doi:10.1158/0008-5472.CAN-06-4111.

    Article  PubMed  CAS  Google Scholar 

  13. Chadwick RB, Jiang GL, Bennington GA, Yuan B, Johnson CK, Stevens MW, et al. Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Proc Nat Acad Sci USA. 2000;97(6):2662–7. doi:10.1073/pnas.040579497.

    Article  PubMed  CAS  Google Scholar 

  14. Deng Q, Huang S. PRDM5 is silenced in human cancers and has growth suppressive activities. Oncogene. 2004;23(28):4903–10. doi:10.1038/sj.onc.1207615.

    Article  PubMed  CAS  Google Scholar 

  15. Watanabe Y, Toyota M, Kondo Y, Suzuki H, Imai T, Ohe-Toyota M, et al. PRDM5 identified as a target of epigenetic silencing in colorectal and gastric cancer. Clinical Cancer Res Off J Am Assoc Cancer Res. 2007;13(16):4786–94. doi:10.1158/1078-0432.CCR-07-0305.

    Article  CAS  Google Scholar 

  16. Rami-Porta R, Crowley JJ, Goldstraw P. The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg Off J Assoc Thorac Cardiovasc Surg Asia. 2009;15(1):4–9.

    Google Scholar 

  17. Travis WD. Pathology and genetics of tumors of the lung, pleura, thymus and heart. France: IARC; 2004.

    Google Scholar 

  18. Garcia JF, Roncador G, Garcia JF, Sanz AI, Maestre L, Lucas E, et al. PRDM1/BLIMP-1 expression in multiple B and T-cell lymphoma. Haematologica. 2006;91(4):467–74.

    PubMed  CAS  Google Scholar 

  19. Chen J, Chen L-J, Yang R-B, Xia Y-L, Zhou H-C, Wu W, et al. Expression and clinical significance of apolipoprotein E in pancreatic ductal adenocarcinoma. Med Oncol. 2013;30(2):1–7.

    Google Scholar 

  20. Wood AJ, Spira A, Ettinger DS. Multidisciplinary management of lung cancer. New Engl J Med. 2004;350(4):379–92.

    Article  Google Scholar 

  21. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, et al. Non-small-cell lung cancer. Lancet. 2011;378(9804):1727–40.

    Article  PubMed  Google Scholar 

  22. Aggarwal C, Somaiah N, Simon GR. Biomarkers with predictive and prognostic function in non-small cell lung cancer: ready for prime time? J Nat Compr Cancer Netw JNCCN. 2010;8(7):822–32.

    CAS  Google Scholar 

  23. Györy I, Fejér G, Ghosh N, Seto E, Wright KL. Identification of a functionally impaired positive regulatory domain I binding factor 1 transcription repressor in myeloma cell lines. J Immunol. 2003;170(6):3125–33.

    PubMed  Google Scholar 

  24. Waller LL, Weaver KE, Petty WJ, Miller AA. Effects of continued tobacco use during treatment of lung cancer. Exp Rev Anticancer Ther. 2010;10(10):1569–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Provincial science and technology foundation of Shandong (2011GG21819).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Liu or Jiajun Du.

Additional information

Tiehong Zhang and Long Meng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Meng, L., Dong, W. et al. High expression of PRDM14 correlates with cell differentiation and is a novel prognostic marker in resected non-small cell lung cancer. Med Oncol 30, 605 (2013). https://doi.org/10.1007/s12032-013-0605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0605-9

Keywords

Navigation