Skip to main content

Advertisement

Log in

Strong cross-talk between angiogenesis and EBV: do we need different treatment approaches in lymphoma cases with EBV and/or high angiogenic capacity

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Angiogenesis is the new blood vessels formation and is the critical event for the growth of malignant diseases and plays a key role in the development, invasion, and metastasis of malignant tumors. Epstein-Barr virus (EBV) is an important carcinogen causing to the some neoplastic disorders and lytically infected cells may contribute to the growth of EBV-associated malignancies, and this phenomenon is related with enhancing angiogenesis. Due to the strong cross-talk between angiogenesis and viral carcinogenesis and increased information about the angiogenesis and viral carcinogenesis in lymphomas, we need new therapeutic approaches to cases with lymphoma. Due to the strong cross-talk between angiogenesis and viral lymphomagenesis, this association was reviewed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.

    Article  PubMed  CAS  Google Scholar 

  2. Ganjoo K. Antiangiogenesis: a new approach to the treatment of lymphoma. Leuk Lymphoma. 2007;48:454–5.

    Article  PubMed  Google Scholar 

  3. Raza A, Franklin MJ, Dudek AZ. Pericytes and vessel maturation during tumor angiogensis and metastasis. Am J Hematol. 2010;85:593–8.

    Article  PubMed  CAS  Google Scholar 

  4. Kuze T, Nakamura N, Hashimoto Y, Sasaki Y, Abe M. The characteristics of Epstein-Bar virus (EBV)-positive diffuse large B-cell lymphoa: comparison between EBV (+) and EBV (−) cases in Japanese population. Jpn J Cancer Res. 2000;91:1233–40.

    Article  PubMed  CAS  Google Scholar 

  5. Oyama T, Yamamoto K, Asano N, Oshiro A, Suzuki R, Kagami Y, Morishima Y, Takeuchi K, Izumo T, Mori S, Ohshima K, Suziyama J, Nakamura N, Abe M, Ichimura K, Sato Y, Yoshino T, Naoe T, Shimoyama Y, Kamiya Y, Kinoshita T, Nakamura S. Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res. 2007;13:5124–32.

    Article  PubMed  CAS  Google Scholar 

  6. Hong GK, Kumar P, Wang L, Damania B, Gulley ML, Delecluse HJ, Polverini PJ, Kenney SC. Epstein-Barr virus lytic infection is required for efficient production of the angiogenesis factor vascular endothelial growth factor in lymphoblastoid cell lines. J Virol. 2005;79:13984–92.

    Article  PubMed  CAS  Google Scholar 

  7. Siu LL, Chan JK, Kwang YL. Natural killer cell malignancies: clinicopathological and molecular features. Histol Histopathol. 2002;17:539–54.

    PubMed  CAS  Google Scholar 

  8. Horenstein MG, Nador RG, Chadburn A, Hyjek EM, Inghirami G, Knowles DM, Cesarmen E. Epstein Barr virus latent gene expression in primary effusion lymphomas containing Kaposi’s sarcoma-associated herpes virus/human herpesvirus-8. Blood. 1997;90:1186–91.

    PubMed  CAS  Google Scholar 

  9. Middldorp JM, Brink AATP, van den Brule AJC, Meijer CJLM. Pathogenic roles for Epstein-Barr virus (EBV) gene products in EBV-associated proliferative disorders. Crit Rev Oncol Hematol. 2003;45:1–36.

    Article  Google Scholar 

  10. Claviez A, Tiemann M, Lüders H, Krams M, Parwaresch R, Schellong G, Dörffel W. Impact of latent Epstein-Barr virus infection in adolescents with Hodgkin’s lymphoma. J Clin Oncol. 2005;23:4048–56.

    Article  PubMed  Google Scholar 

  11. Park S, Lee J, Ko YH, Han A, Jun HJ, Lee SC, Hwang IG, Park YH, Ahn JS, Jung CW, Kim K, Ahn YC, Kang WK, Park K, Kim WS. The impact of the Epstein-Barr virus status on clinical outcome in diffuse large B cell lymphoma. Blood. 2007;110:972–8.

    Article  PubMed  CAS  Google Scholar 

  12. Oyama T, Ichimura K, Suzuki R, Suzimiya J, Ohshima K, Yatabe Y, Yokoi T, Kojima M, Kamiya Y, Taji H, Kagami Y, Ogura M, Saito H, Morishima Y, Nakamura S. Senile EBV + B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol. 2003;27:16–26.

    Article  PubMed  Google Scholar 

  13. Wong HH, Wang J. Epstein-Barr virus positive diffuse large B-cell lymphoma of the elderly. Leuk Lymphoma. 2009;50:335–40.

    Article  PubMed  CAS  Google Scholar 

  14. Paydas S, Ergin M, Erdogan S, Seydaoglu G. Prognostic significance of EBV-LMP-1 and VEGF-A expressions in non-Hodgkin’s lymphomas. Leuk Res. 2008;32:1424–30.

    Article  PubMed  CAS  Google Scholar 

  15. Paydas S, Ergin M, Seydaoglu G, Erdogan S, Yavuz S. Prognostic significance of angiogenic/lymphangiogenic, anti-apoptotic, inflammatory and viral factors in 88 cases with diffuse large B cell lymphoma and review of the literature. Leuk Res. 2009;33:1627–35.

    Article  PubMed  CAS  Google Scholar 

  16. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendolthelial sources of PDGF-B regulate pericyte and influence vascular pattern formation in tumors. J Clin Invest. 2003;112:1142–51.

    PubMed  CAS  Google Scholar 

  17. Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, Hooper AT, Amano H, Avecilla ST, Heissig B, Hattori K, Zhang F, Hicklin DJ, Wu Y, Zhu Z, Dunn A, Salari H, Werb Z, Hackett NR, Crystal RG, Lyden D, Rafii S. Cytokine-mediated development of SDF-1 induces revascularization through recruitment of CXCR4 + hemangiocytes. Nat Med. 2006;12:557–67.

    Article  PubMed  CAS  Google Scholar 

  18. Ruan J, Hajjar K, Rafii S, Leonard JP. Angiogenesis and antiangiogenic therapy in non-Hodgkin’s lymphoma. Ann Oncol. 2009;20:413–24.

    Article  PubMed  CAS  Google Scholar 

  19. Salven P, Orpano A, Teerenhovi L, Joensuu H. Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF, and b FGF is an independent predictor of poor prognosis in non-Hodgkin’s lymphoma: a single center study of 200 patients. Blood. 2000;96:3712–8.

    PubMed  CAS  Google Scholar 

  20. Jorgensen JM, Sorensen F, Bdix K, Nielsen JL, Olsen ML, Funder AMD, D’Amore F. Angiogenesis in non-Hodgkin’s lymphoma: clinico-pathological correlations and prognostic significance in specific subtypes. Leuk Lymphoma. 2007;48:584–95.

    Article  PubMed  CAS  Google Scholar 

  21. Moehler TM, Ho AD, Goldschmidt H, Barlogie B. Angiogenesis in hematologic malignancies. Crit Rev Oncol Hematol. 2003;45:227–44.

    Article  PubMed  CAS  Google Scholar 

  22. Hazar B, Paydas S, Zorludemir S, Sahin B, Tuncer I. Prognostic significance of microvessel density and vascular endothelial growth factor (VGEF) expression in non-Hodgkin’s lymphoma. Leuk Lymphoma. 2003;44:2089–93.

    Article  PubMed  CAS  Google Scholar 

  23. Gratzinger D, Zhao S, Marinelli RJ, Kapp AV, Tibshirani RH, Hammer AS, Hamilton-Dutoit S, Natkunam Y. Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B cell lymphoma subtypes. Am J Pathol. 2007;170:1362–9.

    Article  PubMed  CAS  Google Scholar 

  24. Niitsu N, Okamoto M, Nakamine H, Yoshino T, Tamaru J, Nakamura S. Simultaneous elevation of the serum concentrations of vascular endothelial growth factor and interleukin-6 as independent predictors of prognosis in non-Hodgkin’s lymphoma. Eur J Hematol. 2002;68:91–100.

    Article  CAS  Google Scholar 

  25. d’Amore F, Johansen P, Houmand A, Weisenburger DD, Mortensen LS. Epstein-Barr virus genome in non-Hodgkin’s lymphomas occurring in immunocompetent patients: highset prevalence in nonlymphoblastic T-cell lymphoma and correlation with a poor prognosis. Blood. 1996;87:1045–55.

    PubMed  Google Scholar 

  26. Park S, Lee J, Ko YH, et al. The impact of Epstein-Barr virus status on clinical outcome in diffuse large B-cell lymphoma. Blood. 2007;110(3):972–8.

    Article  PubMed  CAS  Google Scholar 

  27. Kuze T, Nakamura N, Hashimoto Y, Sasaki Y, Abe M. The characteristics of Epstein-Barr virus (EBV)-positive diffuse large B cell lymphoma: comparison between EBV (+) and EBV (−) cases in Japanese population. Jpn J Cancer Res. 2000;91:1233–40.

    Article  PubMed  CAS  Google Scholar 

  28. Morales D, Beltran B, De Mendoza FH, Riva L, Yabar A, Quinones P, Butera JN, Castillo J. Epstein-Barr virus as a prognostic factor in de novo nodal diffuse large B-cell lymphoma. Leuk Lymphoma. 2010;51(1):66–72.

    Article  PubMed  CAS  Google Scholar 

  29. Gibson SE, Hsi ED. Epstein-Barr virus-positive B-cell lymphoma of the elderly at a United States tertiary medical center: an uncommon aggressive lymphoma with a nongerminal center B-cell phenotype. Hum Pathol. 2009;40(5):653–61.

    Article  PubMed  Google Scholar 

  30. Hoeller S, Tzankov A, Pileri SA, et al. Epstein-Barr virus-positive diffuse large B-cell lymphoma in elderly patients is rare in Western populations. Hum Pathol. 2010;41(3):352–7.

    Article  PubMed  Google Scholar 

  31. Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.

    Article  PubMed  CAS  Google Scholar 

  32. Vaysberg M, Balatoni CE, Nepomuceno RR, et al. Rapamycin inhibits proliferation of Epstein-Barr virus-positive B-cell lymphomas through modulation of cell-cycle protein expression. Transplantation. 2007;83(8):1114–21.

    Article  PubMed  CAS  Google Scholar 

  33. Holtan SG, Porrata LF, Colgan JP, et al. mTOR inhibitor monotherapy is insufficient to suppress viremia and disease progression in Epstein-Barr virus-driven lymphoproliferative disorders (EBV-LPD). Am J Hematol. 2008;83(8):688–9.

    Article  PubMed  Google Scholar 

  34. Li Z, Bian LJ, Li Y, Liang YJ, Liang HZ. Expression of protease receptor-2 (PAR-2) in patients with nasopharyngeal carcinoma: correlation with clinicopathological features and prognosis. Pathol Res Pract. 2009;205:542–50.

    Article  PubMed  Google Scholar 

  35. Krishna SM, James S, Balaram P. Expression of VEGF as prognosticator in primary nasopharyngeal cancer and its to EBV status. Virus Res. 2006;115:85–90.

    Article  PubMed  CAS  Google Scholar 

  36. Murano S, Inoue Hİ, Tanabe T, Joab I, Yoshizaki T, Furukawa M, Pagano JS. Induction of cyclooxygenase-2 by Epstein-Barr virus latent membrane proetin 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells. PNAS. 2001;98:6905–10.

    Article  Google Scholar 

  37. Hong GK, Kumar P, Wang L, Damania B, Gulley ML, Delecluse HJ, Polverini PJ, Kenney SC. Epstein-Barr virus lytic infection is required for efficient production of the angiogenesis factor vascular endothelial growth factor in lymphoblastoid cell lines. J Virol. 2005;79:13984–92.

    Article  PubMed  CAS  Google Scholar 

  38. Carmeliet P, Jain RK. Angiogenesis in cancer and other disease. Nature. 2000;407:249–57.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshizaki T, Horikawa T, Quing-Chun R, Wakasaka N, Takeshita H, Sheen TS, Lee SY, Sato H, Furukawa M. Induction of interleukin-8 by Epstein-Barr virus latent membrane protein-1 and its correlation to angiogenesis in nasopharyngeal carcinoma. Clin Cancer Res. 2001;7:1946–51.

    PubMed  CAS  Google Scholar 

  40. Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M, Pagano JS. Epstein-Barr virus latent membrane protein-1induces synthesis of hypoxia inducible factor 1 alpha. Mol Cell Biol. 2004;24:5223–34.

    Article  PubMed  CAS  Google Scholar 

  41. Wakisaka N, Murono S, Yoshizaki T, Furukawa M, Pagano JS. Epstein Barr virus latent membrane protein 1 induces and causes release of fibroblast growth factor-2. Cancer Res. 2002;62:6337–44.

    PubMed  CAS  Google Scholar 

  42. Chabner BA, Koop E, Niederhuber JE, Pinedo HM. Homage to Judah Folkman. Oncologist. 2008;13:205–11.

    Article  Google Scholar 

  43. Levine AM, Tulpule A, Quinn DI, Gorospe G 3rd, Smith DL, Hornor L, Boswell WD, Espina BM, Groshen SG, Masood R, Gill PS. Phase I study of antisense oligonucleotide against vascular endothelial growth factor: decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J Clin Oncol. 2006;24:1712–9.

    Article  PubMed  CAS  Google Scholar 

  44. Stopeck AT, Unger JM, Rimsza LM, Bellamy WT, Iannone M, Persky DO, Leblanc M, Fisher RI, Miller TP. A phase II trial of single agent bevacizumab in patients with relapsed, aggressive non-Hodgkin lymphoma: southwest oncology group study S0108. Leuk Lymphoma. 2009;50:728–35.

    Article  PubMed  CAS  Google Scholar 

  45. Ganjoo KN, An CS, Robertson MJ, Gordon LI, Sen JA, Weisenbach J, Li S, Weller EA, Orazi A, Horning SJ. Rituximab, Bevaciumab and CHOP (RA-CHOP) in untreated diffuse large B cell lymphoma: safety, biomarker and pharmacokinetic analysis. Leuk Lymphoma. 2006;47:998–1005.

    Article  PubMed  CAS  Google Scholar 

  46. Shimoyama Y, Asano N, Kojima M, Morishima S, Yamamoto K, Oyama T, Kinoshita T, Nakamura S. Age-related EBV-associated B-cell lymphoproliferative disorders: Diagnostic aproach to a newly recognized clinicopathological entity. Patol Internat. 2009;59:835–43.

    Article  Google Scholar 

  47. Smith SM, Grinblatt D, Johnson JL, Niedzwiecki D, Rizzieri D, Bartlett NL, Cheson BD. Cancer and leukemia group B. Thalidomide has limited single-agent activity in relapsed or refractory non-Hodgkin’s lymphomas: a phase II trial of the cancer and leukemia group B. Br J Haematol. 2008;140:313–9.

    Article  PubMed  CAS  Google Scholar 

  48. Ruan J, Martin P, Coleman M, Furman RR, Cheung K, Faye A, Elstrom R, Lachs M, Hajjar KA, Leonard JP. Durable responses with the metronomic rituximab and thalidomide plus prednisone, etoposide, procarbazine, and cyclophosphamide regimen in elderly patients with recurrent mantle cell lymphoma. Cancer. 2010;116:2655–64.

    Article  PubMed  CAS  Google Scholar 

  49. Czucman MS, Reeder CB, Palikoff J,. International study of lenalidomide in relapsed/refractory aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2008; 26 (Abstr 8509).

  50. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y. Kerbel RS Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on mobilization and viability of circulating endothelial progenitor cells. Cancer Res. 2003;63:4342–6.

    PubMed  CAS  Google Scholar 

  51. Coleman M, Martin P, Ruan J, Furman R, Niesvizky R, Elstrom R, George P, Kaufman TP, Leonard JP. The PEP-C (prednisone, etoposide, prcarbazine, and cyclophosphamide) regimen for relapsing/refractory lymphoma: low dose metronomic, multidrug therapy. Cancer. 2008;112:2228–32.

    Article  PubMed  CAS  Google Scholar 

  52. Buckstein R, Meyer RM, Seymour L, Biagi J, Mackay H, Laurie S, Eisenhauer E. Phase II testing of sunitinib: the national cancer institute of Canada clinical trials group IND program trials IND 182–185. Curr Oncol. 2007;14:154–61.

    Article  PubMed  CAS  Google Scholar 

  53. Furman RR, Martin P, Ruan J, Cheung YK, Vose JM, Lacasce AS, Elstrom R, Coleman M, Leonard JP. Phase 1 trial of bortezomib plus R-CHOP in previously untreated patients with aggressive non-Hodgkin lymphoma. Cancer. 2010 (Epub ahead of print).

  54. Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, Ansell SM, Luyun R, Flynn PJ, Morton RF, Dakhil SR, Gross H, Kaufmann SH. Phase II trial of single agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23:5347–56.

    Article  PubMed  CAS  Google Scholar 

  55. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, Chiao JH, Reilly JF, Ricker JL, Richon VM, Frankel SR. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.

    Article  PubMed  CAS  Google Scholar 

  56. Wang L, Shi WY, Yang F, Tang W, Gapihan G, Varna M, Shen ZX, Chen SJ, Leboeuf C, Janin A, Zhao WL. Bevacizumab potentiates chemotherapeutic affect of T-leukemia/lymphoma cells by direct action on tumor endothelial cells. Haematologica. 2011;96:927–31.

    Article  PubMed  Google Scholar 

  57. Alizadeh AA, Advani RH. Evaluation and management of angioimmunoblastic T-cell lymphoma: a review of current approaches and future strategies. Clin Adv Hematol Oncol. 2008;6:899–909.

    PubMed  Google Scholar 

  58. Paydas S. Anti-angiogenic strategies will be a revolution in lymphoma? Leuk Res. 2010;34:552.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semra Paydas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paydas, S. Strong cross-talk between angiogenesis and EBV: do we need different treatment approaches in lymphoma cases with EBV and/or high angiogenic capacity. Med Oncol 29, 2159–2165 (2012). https://doi.org/10.1007/s12032-011-0065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-0065-z

Keywords

Navigation