Skip to main content

Advertisement

Log in

Comparative proteomic profiling identified sorcin being associated with gemcitabine resistance in non-small cell lung cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Although gemcitabine-based chemotherapy is one of the more effective chemotherapy regimens against NSCLC, there are still many patients who do not benefit from this therapy. The mechanism of initial or acquired resistance to gemcitabine chemotherapy remains unknown. In this study, we investigated the protein profiling in gemcitabine-resistant and gemcitabine-sensitive NSCLC cell lines by a proteomic technology in order to identify novel gemcitabine resistance associated biomarkers for NSCLC patients. The proteomic profiling of NSCLC cell line H460 and its gemcitabine-resistant subline H460/GEM were compared by an isotope-coded affinity tag technology and tandem mass spectrometry. We further validated the expression of sorcin, a gemcitabine-resistance-related protein identified by proteomics, in 62 NSCLC specimens by immunohistochemistry. Fourteen gemcitabine resistance-related proteins were identified including nine up-regulated proteins and five down-regulated proteins. Immunohistochemical results demonstrated that sorcin staining was seen in 66.1% of NSCLC tumors, and sorcin overexpression was associated with gemcitabine resistance and a poor prognosis in NSCLC patients. In conclusion, sorcin might play an important role in the resistibility to gemcitabine, and it could also be a novel candidate biomarker for predicting the response of NSCLC patients to gemcitabine treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Thomas A, Murray T, Thun M. Cancer statistics. CA Cancer J Clin. 2002;52:23–47.

    Article  PubMed  Google Scholar 

  2. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346:92–8.

    Article  CAS  PubMed  Google Scholar 

  3. Danesi R, Altavilla G, Giovannetti E, Rosell R. Pharmacogenomics of gemcitabine in non-small-cell lung cancer and other solid tumors. Pharmacogenomics. 2009;10:69–80. Review.

    Article  CAS  PubMed  Google Scholar 

  4. Sève P, Dumontet C. Chemoresistance in non-small cell lung cancer. Curr Med Chem Anticancer Agents. 2005;5:73–88. Review.

    Article  PubMed  Google Scholar 

  5. Ho CC, Kuo SH, Huang PH, Huang HY, Yang CH, Yang PC. Caveolin-1 expression is significantly associated with drug resistance and poor prognosis in advanced non-small cell lung cancer patients treated with gemcitabine-based chemotherapy. Lung Cancer. 2008;59:105–10.

    Article  PubMed  Google Scholar 

  6. Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, et al. Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res. 2005;11:3094–101.

    Article  CAS  PubMed  Google Scholar 

  7. Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Mikuria K, Fujimoto M, Maehara S, et al. Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int J Oncol. 2007;31:1345–50.

    CAS  PubMed  Google Scholar 

  8. Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA. An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res. 2004;64:3761–6.

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Steen H, Gygi SP. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol Cell Proteomics. 2003;2:1198–204.

    Article  CAS  PubMed  Google Scholar 

  10. Sethuraman M, McComb ME, Heibeck T, Costello CE, Cohen RA. Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol Cell Proteomics. 2004;3:273–8.

    Article  CAS  PubMed  Google Scholar 

  11. Rosell R, Taron M, Alberola V, Massuti B, Felip E. Genetic testing for chemotherapy in non-small cell lung cancer. Lung Cancer. 2003;41:S97–102.

    Article  PubMed  Google Scholar 

  12. Oguri T, Achiwa H, Muramatsu H, Ozasa H, Sato S, Shimizu S, et al. The absence of human equilibrative nucleoside transporter 1 expression predicts nonresponse to gemcitabine-containing chemotherapy in non-small cell lung cancer. Cancer Lett. 2007;256:112–9.

    Article  CAS  PubMed  Google Scholar 

  13. Castagna A, Antonioli P, Astner H, Hamdan M, Righetti SC, Perego P, et al. A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431. Proteomics. 2004;4:3246–67.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Liu H, Han B, Zhang JT. Identification of 14–3-3sigma as a contributor to drug resistance in human breast cancer cells using functional proteomic analysis. Cancer Res. 2006;66:3248–55.

    Article  CAS  PubMed  Google Scholar 

  15. Yang YX, Chen ZC, Zhang GY, Yi H, Xiao ZQ. A subcellular proteomic investigation into vincristine-resistant gastric cancer cell line. J Cell Biochem. 2008;104:1010–21.

    Article  CAS  PubMed  Google Scholar 

  16. Pan S, Cheng L, White JT, Lu W, Utleg AG, Yan X, et al. Quantitative proteomics analysis integrated with microarray data reveals that extracellular matrix proteins, catenins, and p53 binding protein 1 are important for chemotherapy response in ovarian cancers. OMICS. 2009;13:345–54.

    Article  CAS  PubMed  Google Scholar 

  17. Keenan J, Murphy L, Henry M, Meleady P, Clynes M. Proteomic analysis of multidrug-resistance mechanisms in adriamycin-resistant variants of DLKP, a squamous lung cancer cell line. Proteomics. 2009;9:1556–66.

    Article  CAS  PubMed  Google Scholar 

  18. Hasegawa N, Mizutani K, Suzuki T, Deguchi T, Nozawa Y. A comparative study of protein profiling by proteomic analysis in camptothecin-resistant PC3 and camptothecin-sensitive LNCaP human prostate cancer cells. Urol Int. 2006;77:347–54.

    Article  CAS  PubMed  Google Scholar 

  19. Qi J, Liu N, Zhou Y, Tan Y, Cheng Y, Yang C, et al. Overexpression of sorcin in multidrug resistant human leukemia cells and its role in regulating cell apoptosis. Biochem Biophys Res Commun. 2006;349:303–9.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Xu Y, Tan Y, Qi J, Xiao Y, Yang C, et al. Sorcin, an important gene associated with multidrug-resistance in human leukemia cells. Leuk Res. 2006;30:469–76.

    Article  CAS  PubMed  Google Scholar 

  21. Kawakami M, Nakamura T, Okamura N, Komoto C, Markova S, Kobayashi H, et al. Knock-down of sorcin induces up-regulation of MDR1 in HeLa cells. Biol Pharm Bull. 2007;30:1065–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqing Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Y., Yang, Y., Liu, B. et al. Comparative proteomic profiling identified sorcin being associated with gemcitabine resistance in non-small cell lung cancer. Med Oncol 27, 1303–1308 (2010). https://doi.org/10.1007/s12032-009-9379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-009-9379-5

Keywords

Navigation