Skip to main content

Advertisement

Log in

The G Protein–Coupled Receptor PAC1 Regulates Transactivation of the Receptor Tyrosine Kinase HER3

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Peptide G protein–coupled receptors (GPCRs) for pituitary adenylate cyclase activating polypeptide (PACAP) regulate the growth of non-small cell lung cancer (NSCLC) cells. PACAP binds with high affinity to PAC1, which causes transactivation of receptor tyrosine kinases (RTK) for the EGFR and HER2 but its effect on HER3 is unknown. Using 3 NSCLC cell lines (NCI-H358, NCI-H441, and Calu-3), proteins for EGFR, HER2, HER3, and PAC1 were detected. The increase in EGFR tyrosine phosphorylation caused by PACAP was blocked by the EGFR tyrosine kinase inhibitor (TKI) gefitinib, or PACAP(6-38), a PAC1 antagonist. The increase in HER2 tyrosine phosphorylation caused by PACAP was inhibited by trastuzumab, a monoclonal antibody (mAb) for HER2, or PACAP(6-38). The increase in HER3 tyrosine phosphorylation caused by PACAP was inhibited by HER3 mAb3481 or PACAP(6-38). Immunoprecipitation experiments indicated the PACAP addition to Calu-3 cells resulted in the formation of EGFR/HER3 and HER2/HER3 heterodimers. Addition of the HER3 agonist neuregulin (NRG)-1 increased HER3 tyrosine phosphorylation in non-small-cell lung cancer (NSCLC) cells. PACAP or NRG-1 increased the proliferation of NSCLC cells, whereas PACAP(6-38), gefitinib, trastuzumab, or mAb3481 inhibited proliferation. The results indicate that PAC1 regulates the proliferation of NSCLC cells as a result of transactivation of the EGFR, HER2, and HER3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arimura A (1993) Pituitary adenylate cyclase activating polypeptide (PACAP): discovery and current status of research. Regul Pept 37:287–303

    Google Scholar 

  • Buscail L, Cambillau C, Seva C, Scemama JL, DeNeef P, Robberecht P (1992) Stimulation of rat pancreatic tumoral AR4-2J cell proliferation by pituitary adenylate cyclase-activating polypeptide. Gastroenterology 103:1002–1008

    Article  CAS  Google Scholar 

  • Carrion-Salip D, Panosa C, Menendez JA, Puig T, Oliveras G, Pandiella A et al (2012) Androgen-independent prostate cancer cells circumvent EGFR inhibition by overexpression of alternative HER receptors and ligands. Int J Oncol 41:1128–1138

    Article  CAS  Google Scholar 

  • Draoui M, Hida T, Jakowlew S, Birrer M, Zia F, Moody TW (1996) PACAP stimulates c-fos mRNAs in small cell lung cancer cells. Life Sci 59:307–313

    Article  CAS  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  CAS  Google Scholar 

  • Germano PM, Lieu SN, Xue J, Cooke HJ, ChristofI F, Lu Y, Pisegna JR (2009) PACAP induces signaling and stimulation of 5-hydroxytryptamine release and growth in neuroendocrine tumor cells. J Mol Neurosci 39:391–401

    Article  CAS  Google Scholar 

  • Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna J et al (2012) Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 166:4–17

    Article  CAS  Google Scholar 

  • Jacob W, James I, Hsmann W, Weisser M (2018) Clinical development of HER3-targeting monoclonal antibodies: perils and progress. Cancer Treat Rev 68:111–123

    Article  CAS  Google Scholar 

  • Kiavue N, Cabel L, Melaabi S, Bataillon G, Callens C, Lerebours F, Pierga JY, Bidard FC (2020) ERBB3 mutations in cancer: biological aspects, prevalence and therapeutics. Oncogene 39:487–502

    Article  CAS  Google Scholar 

  • Kumar S, PIoszak A, Zhang C, Swaminathan K, Xu HE (2011) Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors. PLoS ONE 6:e19682. https://doi.org/10.1371/journal.pone.0019682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le SV, Yamaguchi KS, McArdle CA, Tachiki K, Pisegna JR, Germano P (2002) PAC1 and PACAP expression, signaling and effect on the growth of HCT8, human colonic tumor cells. Regul Pept 109:115–125

    Article  CAS  Google Scholar 

  • Lee FS, Rajagopal R, Kim AH, Chang PC, Chao MV (2002) Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptide. J Biol Chem 277:9096–9102

    Article  CAS  Google Scholar 

  • Lee L, Ramos-Alvarez I, Moody TW, Mantey SA, Jensen RT (2020) Neuropeptide bombesin receptor activation stimulates growth of lung cancer cells through HER3 with a MAPK-dependent mechanism. Biochim Biophys Acta, Mol Cell Res 1867:118625

    Article  CAS  Google Scholar 

  • Lemmon MA, Schlessinger J, Ferguson KM (2014) The EGFR family: not so prototypical receptor tyrosine kinase. Cold Spring Harb Perspect Biol 6:a020768. https://doi.org/10.1101/cshperspect.a020768

    Article  PubMed  PubMed Central  Google Scholar 

  • Leyton J, Coelho T, Coy DH, Jakowlew S, Birrer MJ, Moody TW (1998) PACAP(6-38) inhibits the growth of prostate cancer cell lines. Cancer Lett 125:131–139

    Article  CAS  Google Scholar 

  • Liao C, Zhao X, Brewer M, May V, Li J (2017) Conformational transitions of the pituitary adenylate cyclase-activating polypeptide receptor, a human class B GPCR. Sci Rep 7:5427

    Article  Google Scholar 

  • Lutz EM, Ronaldson E, Shaw P, Johnson MS, Holland PJ, Mitchell R (2006) Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: consequences for signaling by VIP and PACAP. Mol Cell Neurosci 31:193–209

    Article  CAS  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  Google Scholar 

  • May V, Lutz E, MacKenzie C, Schutz KC, Dozark K, Braas K (2010) Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase gamma and vesicle endocytosis for neuronal survival. J Biol Chem 285:9749–9761

    Article  CAS  Google Scholar 

  • Mitri Z, Constattine T, O’Reagan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 743193:1–7. https://doi.org/10.1155/2012/743193

    Article  CAS  Google Scholar 

  • Miyata A, Arimura A, Cahl RR, Minamino N, Uehara A, Jiang L et al (1989) Isolation of a novel 38 residue hypothalamic polypeptide which stimulated adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  CAS  Google Scholar 

  • Moody TW, Leyton J, Casibang M, Pisegna J, Jensen RT (2002) PACAP-27 tyrosine phosphorylates mitogen activated protein kinase and increases VEGF mRNAs in human lung cancer cells. Reg Peptides 109:135–140

    Article  CAS  Google Scholar 

  • Moody TW, Leyton J, Jensen RT (2012a) Pituitary adenylate cyclase activating polypeptide causes increased tyrosine phosphorylation of focal adhesion kinase and paxillin. J Mol Neurosci 46:68–74

    Article  CAS  Google Scholar 

  • Moody TW, Osefo N, Nuche-Berenguer B, Ridnour L, Wink D, Jensen RT (2012b) Pituitary adenylate cyclase activating polypeptide causes tyrosine phosphorylation of the epidermal growth factor receptor in lung cancer cells. J Pharmacol Exp Ther 34:873–881

    Article  Google Scholar 

  • Moody TW, Nuche-Berenguer B, Nakamura T, Jensen RT (2016a) EGFR transactivation by peptide G protein-coupled receptors in cancer. Curr Drug Targets 17:520–528

    Article  CAS  Google Scholar 

  • Moody TW, Nuche-Berenguer B, Jensen RT (2016b) Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide and their receptors in cancer. Curr Opin Endocrinol Diabetes Obes 23:36–47

    Article  Google Scholar 

  • Moody TW, Ramos-Alvarez I, Jensen RT (2018) Neuropeptide G Protein-coupled receptors as oncotargets. Front Endocrinol (Lausanne) 9:345

    Article  Google Scholar 

  • Moody TW, Lee L, Iordanskaia T, Ramos-Alvarez I, Moreno P, Boudreau HE, Leto TL, Jensen RT (2019) PAC1 regulates receptor tyrosine kinase transactivation in a reactive oxygen species-dependent manner. Peptides Oct 120:170017. https://doi.org/10.1016/j.peptides2018.09.005

    Article  CAS  Google Scholar 

  • Nakamachi T, Sugiyama K, Watanabe J, Imaio N, Kagami N, Hori M (2014) Comparison of expression and proliferative effect of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors on human astrocytoma cell lines. J Mol Neurosci 54:388–394

    Article  CAS  Google Scholar 

  • Paez JB, Janne PA, Lee JC, Tracy S, Greuich H, Gabriel S et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  Google Scholar 

  • Pisegna JR, Wank SA (1993) Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type 1 receptor. Proc Natl Acad Sci U S A 90:6345–6349

    Article  CAS  Google Scholar 

  • Pisegna JR, Wank S (1996) Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. J Biol Chem 271:17267–17274

    Article  CAS  Google Scholar 

  • Qin Q, Baosheng L (2019) Pembrolizumab for the treatment of non-small cell lung cancer: current status and future discussions. J Cancer Res Therapeut 15:743–750

    Article  CAS  Google Scholar 

  • Qiu Z, Chen Z, Zhang C, Zhong W (2019) Achievements and futures of immune checkpoint inhibitors in non-small cell lung cancer. Exp Hematol Oncol 8:19

    Article  Google Scholar 

  • Said SI, Mutt V (1970) Polypeptide with broad biological activity: isolation from small intestine. Science 169:1217–1218

    Article  CAS  Google Scholar 

  • Santoni-Rugiu E, Melchior LC, Urbanska EM, Jakobsen JN, Stricker K, Grauslund M, Sorensen JB (2019) Intrinsic resistance to EGFR-tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: differences and similarities with acquired resistance. Cancers 11:923–980

    Article  CAS  Google Scholar 

  • Sherwood NM, Krueckl SL, McRory JE (1989) The origin and function of the pituitary adenylate cyclase activating polypeptide (PACAP)(PACAP)/glucagon superfamily. Endocr Rev 21:619–670

    Google Scholar 

  • Shi GX, Jin L, Andres DA (2010) Src dependent TrkA transactivation is required for pituitary adenylate cyclase-activating polypeptide 38-mediated Rit activation and neuronal differentiation. Mol Biol Cell 21:1597–1608

    Article  CAS  Google Scholar 

  • Sun C, Song D, Davis-Taber R, Barrett LW, Scott V, Richardson PL et al (2007) Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to extracellular domain of PAC1-Rs. Proc Natl Acad Sci U S A 104:7875–7880

    Article  CAS  Google Scholar 

  • Usiyama M, Ikelda R, Sugawara H, Yoshida M, Mori K, Kangawa K et al (2007) Differential molecular signaling through PAC1 isoforms as a result of alternative splicing in the first extracellular domain and the third intracellular loop. Mol Pharmacol 72:103–111

    Article  Google Scholar 

  • Vaudry D, Falluel Morel A, Bourgault S, Basille M, Burel D, Wurtz O et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharm Rev 61:283–357

    Article  CAS  Google Scholar 

  • Wang Z (2017) ErbB receptors and cancer. Methods Mol Biol 1652:3–35

    Article  CAS  Google Scholar 

  • Zia F, Fagarason M, Bitar K, Coy DH, Pisegna JR, Wank SA et al (1995) Pituitary adenylate cyclase activating polypeptide receptors regulate the growth of non-small cell lung cancer cells. Cancer Res 55:4886–4891

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Irene Ramos-Gonzalez for the helpful discussions. This research is supported by the intramural programs of the NCI and NIDDK of NIH. This research was presented at the 14th Annual meeting on PACAP/VIP and related peptides in 2019 at Los Angeles, CA.

Author information

Authors and Affiliations

Authors

Contributions

The research was conducted by Terry Moody and Lingaku Lee. The manuscript was written by Terry Moody and Robert Jensen.

Corresponding author

Correspondence to Terry W. Moody.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moody, T.W., Lee, L. & Jensen, R.T. The G Protein–Coupled Receptor PAC1 Regulates Transactivation of the Receptor Tyrosine Kinase HER3. J Mol Neurosci 71, 1589–1597 (2021). https://doi.org/10.1007/s12031-020-01711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01711-8

Keywords

Navigation