Skip to main content
Log in

Hot Genes in Schizophrenia: How Clinical Datasets Could Help to Refine their Role

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We investigated the effect of a set of SNPs within 5 genes identified by GWASs as possible risk genes for schizophrenia (SCZ) in two independent samples, comprising 176 SCZ patients and 326 controls of Korean origin and 83 SCZ patients and 194 controls of Italian origin. The PANSS was used to assess psychopathology severity and antipsychotic response (AR). Several clinical features were assessed at recruitment. In the Korean sample, the SP4 gene haplotype rs2282888-rs2237304-rs10272006-rs12673091 (p = 0.02) was associated with SCZ. In the Italian sample, PPP3CC rs11780915 (genotypic: p = 0.006; allelic: p = 0.001) and rs2249098 (genotypic: p = 0.0004; allelic: p = 0.00006) were associated with SCZ, as well as the PPP3CC rs11780915-rs10108011-rs2249098 and the ZNF804A rs7603001-rs1344706 haplotypes (p = 0.03 and p = 0.02). Several RORA variants were associated with AR in both the samples, although only the haplotype rs1020729-rs1871858 in the Korean sample survived to the statistical correction (p = 0.01). Exploratory analyses suggested that: (1) PPP3CC, ST8SIA2, and SP4 genes may modulate psychotic symptoms, and (2) RORA and ZNF804A genes may influence AR. Our results partially support a role for these genes in SCZ and AR. Analyses in well phenotyped samples may help to refine the role of the genes identified by GWASs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkins DE, Aberg K, McClay JL, Hettema JM, Kornstein SG, Bukszar J, van den Oord EJ (2010) A genomewide association study of citalopram response in major depressive disorder-a psychometric approach. Biol Psychiatry 68(6):e25–7. https://doi.org/10.1016/j.biopsych.2010.05.018

  • Arai M, Yamada K, Toyota T, Obata N, Haga S, Yoshida Y, Nakamura K, Minabe Y, Ujike H, Sora I, Ikeda K, Mori N, Yoshikawa T, Itokawa M (2006) Association between polymorphisms in the promoter region of the sialyltransferase 8B (SIAT8B) gene and schizophrenia. Biol Psychiatry 59(7):652–659. https://doi.org/10.1016/j.biopsych.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual ofmental disorders. Washington, DC

  • Barrett JC (2009) Haploview: visualization and analysis of SNP genotype data Cold Spring Harbor protocols 2009:pdb ip71 doi:https://doi.org/10.1101/pdb.ip71

  • Brandl EJ, Kennedy JL, Muller DJ (2014) Pharmacogenetics of antipsychotics. Canadian J Psychiatry Revue Canadienne de Psychiatrie 59(2):76–88. https://doi.org/10.1177/070674371405900203

    Article  Google Scholar 

  • Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock Handb Exp Pharmacol:3–27 doi:https://doi.org/10.1007/978-3-642-25950-0_1

  • Chen J, Cao F, Liu L, Wang L, Chen X (2015) Genetic studies of schizophrenia: an update. Neurosci Bull 31(1):87–98. https://doi.org/10.1007/s12264-014-1494-4

    Article  PubMed  PubMed Central  Google Scholar 

  • De Ronchi D, Berardi D, Menchetti M, Ferrari G, Serretti A, Dalmonte E, Fratiglioni L (2005) Occurrence of cognitive impairment and dementia after the age of 60: a population-based study from Northern Italy. Dement Geriatr Cogn Disord 19(2-3):97–105. https://doi.org/10.1159/000082660

    Article  PubMed  Google Scholar 

  • Devanna P, Vernes SC (2014) A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Sci Rep 4(1):3994. https://doi.org/10.1038/srep03994

    Article  PubMed  PubMed Central  Google Scholar 

  • Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S, Schnell K, Arnold C, Witt SH, Rietschel M, Cichon S, Walter H, Meyer-Lindenberg A (2011) Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. NeuroImage 54(3):2514–2523. https://doi.org/10.1016/j.neuroimage.2010.10.012

    Article  PubMed  Google Scholar 

  • Fabbri C, Marsano A, Albani D, Chierchia A, Calati R, Drago A, Crisafulli C, Calabrò M, Kasper S, Lanzenberger R, Zohar J, Juven-Wetzler A, Souery D, Montgomery S, Mendlewicz J, Serretti A (2014) PPP3CC gene: a putative modulator of antidepressant response through the B-cell receptor signaling pathway. The pharmacogenomics journal 14(5):463–472. https://doi.org/10.1038/tpj.2014.15

    Article  CAS  PubMed  Google Scholar 

  • Fabbri C, Souery D, Calati R, Crisafulli C, Chierchia A, Albani D, Forloni G, Chiesa A, Martines R, Sentissi O, Mendlewicz J, de Girolamo G, Serretti A (2015) Genetics of psychotropic medication induced side effects in two independent samples of bipolar patients. J Neural Transm 122(1):43–58. https://doi.org/10.1007/s00702-014-1290-3

    Article  CAS  PubMed  Google Scholar 

  • Forlani M, Morri M, Belvederi Murri M, Bernabei V, Moretti F, Attili T, Biondini A, de Ronchi D, Atti AR (2014) Anxiety symptoms in 74+ community-dwelling elderly: associations with physical morbidity, depression and alcohol consumption. PLoS One 9(2):e89859. https://doi.org/10.1371/journal.pone.0089859

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuste M, Pinacho R, Melendez-Perez I, Villalmanzo N, Villalta-Gil V, Haro JM, Ramos B (2013) Reduced expression of SP1 and SP4 transcription factors in peripheral blood mononuclear cells in first-episode psychosis. J Psychiatr Res 47(11):1608–1614. https://doi.org/10.1016/j.jpsychires.2013.07.019

    Article  PubMed  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229. https://doi.org/10.1126/science.1069424

    Article  CAS  PubMed  Google Scholar 

  • Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD, Reinalda MS, Slager SL, McGrath PJ, Hamilton SP (2010) A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry 67(2):133–138. https://doi.org/10.1016/j.biopsych.2009.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennings JM, Uhr M, Klengel T, Weber P, Pütz B, Touma C, Czamara D, Ising M, Holsboer F, Lucae S (2015) RNA expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response. Transl Psychiatry 5(3):e538. https://doi.org/10.1038/tp.2015.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hettema JM (2016) Psychophysiology of threat response, paradigm shifts in psychiatry, and RDoC: implications for genetic investigation of psychopathology. Psychophysiology 53(3):348–350. https://doi.org/10.1111/psyp.12550

    Article  PubMed  PubMed Central  Google Scholar 

  • Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N, Ujike H, Muratake T, Someya T, Arinami T (2007) Support for association of the PPP3CC gene with schizophrenia. Mol Psychiatry 12(10):891–893. https://doi.org/10.1038/sj.mp.4002019

    Article  CAS  PubMed  Google Scholar 

  • ISGC, WTCCC2 (2012) Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 72(8):620–628. https://doi.org/10.1016/j.biopsych.2012.05.035

  • Ji B, Wang X, Pinto-Duarte A, Kim M, Caldwell S, Young JW, Behrens MM, Sejnowski TJ, Geyer MA, Zhou X (2013) Prolonged ketamine effects in hypomorphic mice: mimicking phenotypes of schizophrenia. PLoS One 8(6):e66327. https://doi.org/10.1371/journal.pone.0066327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kautzky A, Baldinger P, Souery D, Montgomery S, Mendlewicz J, Zohar J, Serretti A, Lanzenberger R, Kasper S (2015) The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression. European Neuropsychopharmacology : Journal European College Neuropsychopharmacology 25(4):441–453. https://doi.org/10.1016/j.euroneuro.2015.01.001

    Article  CAS  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276. https://doi.org/10.1093/schbul/13.2.261

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita Y, Suzuki T, Ikeda M, Kitajima T, Yamanouchi Y, Inada T, Yoneda H, Iwata N, Ozaki N (2005) No association with the calcineurin A gamma subunit gene (PPP3CC) haplotype to Japanese schizophrenia. J Neural Transm 112(9):1255–1262. https://doi.org/10.1007/s00702-004-0261-5

    Article  CAS  PubMed  Google Scholar 

  • Krocher T et al (2015) Schizophrenia-like phenotype of polysialyltransferase ST8SIA2-deficient mice. Brain Struct Funct 220(1):71–83. https://doi.org/10.1007/s00429-013-0638-z

    Article  PubMed  Google Scholar 

  • Kyogoku C, Yanagi M, Nishimura K, Sugiyama D, Morinobu A, Fukutake M, Maeda K, Shirakawa O, Kuno T, Kumagai S (2011) Association of calcineurin A gamma subunit (PPP3CC) and early growth response 3 (EGR3) gene polymorphisms with susceptibility to schizophrenia in a Japanese population. Psychiatry Res 185(1-2):16–19. https://doi.org/10.1016/j.psychres.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  • Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, McMahon FJ, Schork NJ, Nurnberger JI Jr, Niculescu AB III (2009) Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Medical Genetics Part B, Neuropsychiatric Genetics : Official Publication Int Soc Psychiatric Genetics 150B(2):155–181. https://doi.org/10.1002/ajmg.b.30887

    Article  CAS  Google Scholar 

  • Lee KW, Woon PS, Teo YY, Sim K (2012) Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neurosci Biobehav Rev 36(1):556–571. https://doi.org/10.1016/j.neubiorev.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  • Lee MT et al (2011) Genome-wide association study of bipolar I disorder in the Han Chinese population. Mol Psychiatry 16(5):548–556. https://doi.org/10.1038/mp.2010.43

    Article  CAS  PubMed  Google Scholar 

  • Lencz T, Szeszko PR, DeRosse P, Burdick KE, Bromet EJ, Bilder RM, Malhotra AK (2010) A schizophrenia risk gene, ZNF804A, influences neuroanatomical and neurocognitive phenotypes. Neuropsychopharmacology : Official Publication Am College Neuropsychopharmacology 35(11):2284–2291. https://doi.org/10.1038/npp.2010.102

    Article  CAS  Google Scholar 

  • Levine J (2013) Risk loci with shared effects on major psychiatric disorders. Lancet 382(9889):307. https://doi.org/10.1016/S0140-6736(13)61632-3

    Article  PubMed  Google Scholar 

  • Mao X, Yang SH, Simpkins JW, Barger SW (2007) Glutamate receptor activation evokes calpain-mediated degradation of Sp3 and Sp4, the prominent Sp-family transcription factors in neurons. J Neurochem 100(5):1300–1314. https://doi.org/10.1111/j.1471-4159.2006.04297.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAuley EZ, Scimone A, Tiwari Y, Agahi G, Mowry BJ, Holliday EG, Donald JA, Weickert CS, Mitchell PB, Schofield PR, Fullerton JM (2012) Identification of sialyltransferase 8B as a generalized susceptibility gene for psychotic and mood disorders on chromosome 15q25-26. PLoS One 7(5):e38172. https://doi.org/10.1371/journal.pone.0038172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossner R et al (2012) The schizophrenia risk gene ZNF804A influences the antipsychotic response of positive schizophrenia symptoms. Eur Arch Psychiatry Clin Neurosci 262(3):193–197. https://doi.org/10.1007/s00406-011-0235-1

    Article  PubMed  Google Scholar 

  • Murdoch JD, State MW (2013) Recent developments in the genetics of autism spectrum disorders. Curr Opin Genet Dev 23(3):310–315. https://doi.org/10.1016/j.gde.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  • O’Donovan MC et al (2008) Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40(9):1053–1055. https://doi.org/10.1038/ng.201

    Article  PubMed  Google Scholar 

  • Organization WH (2008) The global burden of disease: 2004 update. Geneve

  • Porcelli S, Lee SJ, Han C, Patkar AA, Serretti A, Pae CU (2015) CACNA1C gene and schizophrenia: a case-control and pharmacogenetic study. Psychiatr Genet 25(4):163–167. https://doi.org/10.1097/YPG.0000000000000092

    Article  CAS  PubMed  Google Scholar 

  • Ripke S, Neale BM, Corvin A, Walters JTR, Farh KH, Holmans PA, Lee P, Bulik-Sullivan B, Collier DA, Huang H, Pers TH, Agartz I, Agerbo E, Albus M, Alexander M, Amin F, Bacanu SA, Begemann M, Belliveau Jr RA, Bene J, Bergen SE, Bevilacqua E, Bigdeli TB, Black DW, Bruggeman R, Buccola NG, Buckner RL, Byerley W, Cahn W, Cai G, Campion D, Cantor RM, Carr VJ, Carrera N, Catts SV, Chambert KD, Chan RCK, Chen RYL, Chen EYH, Cheng W, Cheung EFC, Ann Chong S, Robert Cloninger C, Cohen D, Cohen N, Cormican P, Craddock N, Crowley JJ, Curtis D, Davidson M, Davis KL, Degenhardt F, del Favero J, Demontis D, Dikeos D, Dinan T, Djurovic S, Donohoe G, Drapeau E, Duan J, Dudbridge F, Durmishi N, Eichhammer P, Eriksson J, Escott-Price V, Essioux L, Fanous AH, Farrell MS, Frank J, Franke L, Freedman R, Freimer NB, Friedl M, Friedman JI, Fromer M, Genovese G, Georgieva L, Giegling I, Giusti-Rodríguez P, Godard S, Goldstein JI, Golimbet V, Gopal S, Gratten J, de Haan L, Hammer C, Hamshere ML, Hansen M, Hansen T, Haroutunian V, Hartmann AM, Henskens FA, Herms S, Hirschhorn JN, Hoffmann P, Hofman A, Hollegaard MV, Hougaard DM, Ikeda M, Joa I, Julià A, Kahn RS, Kalaydjieva L, Karachanak-Yankova S, Karjalainen J, Kavanagh D, Keller MC, Kennedy JL, Khrunin A, Kim Y, Klovins J, Knowles JA, Konte B, Kucinskas V, Ausrele Kucinskiene Z, Kuzelova-Ptackova H, Kähler AK, Laurent C, Lee Chee Keong J, Hong Lee S, Legge SE, Lerer B, Li M, Li T, Liang KY, Lieberman J, Limborska S, Loughland CM, Lubinski J, Lönnqvist J, Macek Jr M, Magnusson PKE, Maher BS, Maier W, Mallet J, Marsal S, Mattheisen M, Mattingsdal M, McCarley RW, McDonald C, McIntosh AM, Meier S, Meijer CJ, Melegh B, Melle I, Mesholam-Gately RI, Metspalu A, Michie PT, Milani L, Milanova V, Mokrab Y, Morris DW, Mors O, Murphy KC, Murray RM, Myin-Germeys I, Müller-Myhsok B, Nelis M, Nenadic I, Nertney DA, Nestadt G, Nicodemus KK, Nikitina-Zake L, Nisenbaum L, Nordin A, O’Callaghan E, O’Dushlaine C, O’Neill FA, Oh SY, Olincy A, Olsen L, van Os J, Endophenotypes International Consortium P, Pantelis C, Papadimitriou GN, Papiol S, Parkhomenko E, Pato MT, Paunio T, Pejovic-Milovancevic M, Perkins DO, Pietiläinen O, Pimm J, Pocklington AJ, Powell J, Price A, Pulver AE, Purcell SM, Quested D, Rasmussen HB, Reichenberg A, Reimers MA, Richards AL, Roffman JL, Roussos P, Ruderfer DM, Salomaa V, Sanders AR, Schall U, Schubert CR, Schulze TG, Schwab SG, Scolnick EM, Scott RJ, Seidman LJ, Shi J, Sigurdsson E, Silagadze T, Silverman JM, Sim K, Slominsky P, Smoller JW, So HC, Spencer CCA, Stahl EA, Stefansson H, Steinberg S, Stogmann E, Straub RE, Strengman E, Strohmaier J, Scott Stroup T, Subramaniam M, Suvisaari J, Svrakic DM, Szatkiewicz JP, Söderman E, Thirumalai S, Toncheva D, Tosato S, Veijola J, Waddington J, Walsh D, Wang D, Wang Q, Webb BT, Weiser M, Wildenauer DB, Williams NM, Williams S, Witt SH, Wolen AR, Wong EHM, Wormley BK, Simon Xi H, Zai CC, Zheng X, Zimprich F, Wray NR, Stefansson K, Visscher PM, Trust Case-Control Consortium W, Adolfsson R, Andreassen OA, Blackwood DHR, Bramon E, Buxbaum JD, Børglum AD, Cichon S, Darvasi A, Domenici E, Ehrenreich H, Esko T, Gejman PV, Gill M, Gurling H, Hultman CM, Iwata N, Jablensky AV, Jönsson EG, Kendler KS, Kirov G, Knight J, Lencz T, Levinson DF, Li QS, Liu J, Malhotra AK, McCarroll SA, McQuillin A, Moran JL, Mortensen PB, Mowry BJ, Nöthen MM, Ophoff RA, Owen MJ, Palotie A, Pato CN, Petryshen TL, Posthuma D, Rietschel M, Riley BP, Rujescu D, Sham PC, Sklar P, St Clair D, Weinberger DR, Wendland JR, Werge T, Daly MJ, Sullivan PF, O’Donovan MC (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. https://doi.org/10.1038/nature13595

    Article  CAS  PubMed Central  Google Scholar 

  • Sacchetti E, Scassellati C, Minelli A, Valsecchi P, Bonvicini C, Pasqualetti P, Galluzzo A, Pioli R, Gennarelli M (2013) Schizophrenia susceptibility and NMDA-receptor mediated signalling: an association study involving 32 tagSNPs of DAO, DAOA, PPP3CC, and DTNBP1 genes. BMC Medical Genetics 14(1):33. https://doi.org/10.1186/1471-2350-14-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schennach R, Riedel M, Obermeier M, Seemüller F, Jäger M, Schmauss M, Laux G, Pfeiffer H, Naber D, Schmidt LG, Gaebel W, Klosterkötter J, Heuser I, Maier W, Lemke MR, Rüther E, Klingberg S, Gastpar M, Möller HJ (2015) What are depressive symptoms in acutely ill patients with schizophrenia spectrum disorder? European Psychiatry : Journal Assoc European Psychiatrists 30(1):43–50. https://doi.org/10.1016/j.eurpsy.2014.11.001

    Article  CAS  Google Scholar 

  • Schlossberg K, Massler A, Zalsman G (2010) Environmental risk factors for psychopathology. Israel J psychiatry Related Sci 47(2):139–143

    Google Scholar 

  • Sheehan DV et al (1998) The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clinical Psychiatry 59(Suppl 20):22–33 quiz 34-57

    Google Scholar 

  • Shi J, Potash JB, Knowles JA, Weissman MM, Coryell W, Scheftner WA, Lawson WB, DePaulo JR, Gejman PV, Sanders AR, Johnson JK, Adams P, Chaudhury S, Jancic D, Evgrafov O, Zvinyatskovskiy A, Ertman N, Gladis M, Neimanas K, Goodell M, Hale N, Ney N, Verma R, Mirel D, Holmans P, Levinson DF (2011) Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry 16(2):193–201. https://doi.org/10.1038/mp.2009.124

    Article  CAS  PubMed  Google Scholar 

  • Shyn SI, Shi J, Kraft JB, Potash JB, Knowles JA, Weissman MM, Garriock HA, Yokoyama JS, McGrath PJ, Peters EJ, Scheftner WA, Coryell W, Lawson WB, Jancic D, Gejman PV, Sanders AR, Holmans P, Slager SL, Levinson DF, Hamilton SP (2011) Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Mol Psychiatry 16(2):202–215. https://doi.org/10.1038/mp.2009.125

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13(8):537–551. https://doi.org/10.1038/nrg3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192. https://doi.org/10.1001/archpsyc.60.12.1187

    Article  PubMed  Google Scholar 

  • Sun Y, Hu D, Liang J, Bao YP, Meng SQ, Lu L, Shi J (2015) Association between variants of zinc finger genes and psychiatric disorders: systematic review and meta-analysis. Schizophr Res 162(1-3):124–137. https://doi.org/10.1016/j.schres.2015.01.036

    Article  PubMed  Google Scholar 

  • Tam GW et al (2010) Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochem Soc Trans 38(2):445–451. https://doi.org/10.1042/BST0380445

    Article  CAS  PubMed  Google Scholar 

  • Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “just the facts” what we know in 2008. 2. Epidemiology and etiology. Schizophr Res 102(1-3):1–18. https://doi.org/10.1016/j.schres.2008.04.011

    Article  PubMed  Google Scholar 

  • Tao R et al (2007) Positive association between SIAT8B and schizophrenia in the Chinese Han population. Schizophr Res 90(1-3):108–114. https://doi.org/10.1016/j.schres.2006.09.029

    Article  PubMed  Google Scholar 

  • Vazza G, Bertolin C, Scudellaro E, Vettori A, Boaretto F, Rampinelli S, de Sanctis G, Perini G, Peruzzi P, Mostacciuolo ML (2007) Genome-wide scan supports the existence of a susceptibility locus for schizophrenia and bipolar disorder on chromosome 15q26. Mol Psychiatry 12(1):87–93. https://doi.org/10.1038/sj.mp.4001895

    Article  CAS  PubMed  Google Scholar 

  • Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, Voisey J (2014) Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry 4(1):e339. https://doi.org/10.1038/tp.2013.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Storm DR (2005) The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 6(4):267–276. https://doi.org/10.1038/nrn1647

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Li W, Zhang H, Lv L, Song X, Yang Y, Li W, Yang G, Jiang C, Zhao J, Lu T, Zhang D, Yue W (2011) To the editor: association of ZNF804A polymorphisms with schizophrenia and antipsychotic drug efficacy in a Chinese Han population. Psychiatry Res 190(2-3):379–381. https://doi.org/10.1016/j.psychres.2011.05.031

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wu X, Diao F, Gan Z, Zhong Z, Wei Q, Guan N (2012) Association analysis of ZNF804A (zinc finger protein 804A) rs1344706 with therapeutic response to atypical antipsychotics in first-episode Chinese patients with schizophrenia. Compr Psychiatry 53(7):1044–1048. https://doi.org/10.1016/j.comppsych.2012.02.002

    Article  PubMed  Google Scholar 

  • Zhou X, Qyang Y, Kelsoe JR, Masliah E, Geyer MA (2007) Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Behav 6(3):269–276. https://doi.org/10.1111/j.1601-183X.2006.00256.x

    Article  PubMed  Google Scholar 

  • Zhou X, Tang W, Greenwood TA, Guo S, He L, Geyer MA, Kelsoe JR (2009) Transcription factor SP4 is a susceptibility gene for bipolar disorder. PloS one 4:e5196. https://doi.org/10.1371/journal.pone.0005196

Download references

Acknowledgements

The authors thank all the participants in the present study.

Funding

This study was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI12C0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Un Pae.

Ethics declarations

The study protocol was approved by the institutional review board (approval number HC10TISI0031). The study protocols were approved by the local Ethical Committees and they have been performed in accordance with the ethical standards laid down in the 1975 Declaration of Helsinki.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porcelli, S., Lee, SJ., Han, C. et al. Hot Genes in Schizophrenia: How Clinical Datasets Could Help to Refine their Role. J Mol Neurosci 64, 273–286 (2018). https://doi.org/10.1007/s12031-017-1016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-1016-8

Keywords

Navigation