Skip to main content
Log in

The Interplay of Akt and ERK in Aβ Toxicity and Insulin-Mediated Protection in Primary Hippocampal Cell Culture

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

It is not known if insulin prevents Aβ-induced cell death, MAPK, and Akt activity in isolated hippocampal cell culture. This study was aimed to explore the effect of insulin on Aβ-induced cell death and ERK and Akt signaling alteration in isolated hippocampal cell culture. Additionally, it was desirable to assess if there is any interaction between these two pathways. The hippocampal cells were derived from fetuses at the embryonic day 18–19. The cells were treated with different drugs, and MTT assay, morphological assessments, and Western blot were done. Insulin prevented Aβ-induced cell death and caspase-3 cleavage. Aβ-induced toxicity was aligned with decrement of the phosphorylated Akt (pAkt) which was prevented by insulin. The PI3 kinase inhibitor, LY294002, decreased pAkt and abolished the protective effect of insulin. Aβ exposure increased phosphorylated ERK (pERK) in parallel with cell death and apoptosis. Insulin-inhibited ERK activation (phosphorylation) induced by Aβ and PD98059 (as ERK inhibitor) did not affect the protective effect of insulin. One of the interesting finding of this study was the interplay of Akt and ERK in Aβ toxicity and insulin-mediated protection; meaning that there is an inverse relation between pERK and pAkt, in a way that PI3-Akt pathway inhibition leads to pERK increment while ERK inhibition causes Akt phosphorylation (activation). This study showed, for the first time, that insulin protects against Aβ toxicity in isolated hippocampal cell culture via modulating Akt and ERK phosphorylation and also revealed an interaction between those signals in Aβ toxicity and insulin-mediated protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Behl C, Davis JB, Klier FG, Schubert D (1994) Amyloid beta peptide induces necrosis rather than apoptosis. Brain Res 645(1–2):253–264

    Article  CAS  PubMed  Google Scholar 

  • Bogoyevitch MA, Court NW (2004) Counting on mitogen-activated protein kinases—ERKs 3, 4, 5, 6, 7 and 8. Cell Signal 16(12):1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM (2006) Activation of toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J Biol Chem 281(6):3651–3659

  • Cho HJ, Kim SK, Jin SM, Hwang EM, Kim YS, Huh K, Mook-Jung I (2007) IFN-gamma-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes. Glia 55(3):253–262

  • Chong YH, Shin YJ, Lee EO, Kayed R, Glabe CG, Tenner AJ (2006) ERK1/2 activation mediates Abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. J Biol Chem 281(29):20315–20325

    Article  CAS  PubMed  Google Scholar 

  • Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

  • Cui W, Tao J, Wang Z, Ren M, Zhang Y, Sun Y, Peng Y, Li R (2013) Neuregulin1beta1 antagonizes apoptosis via ErbB4-dependent activation of PI3-kinase/Akt in APP/PS1 transgenic mice. Neurochem Res 38(11):2237–2246

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927

    Article  CAS  PubMed  Google Scholar 

  • De Fea K, Roth RA (1997) Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 272(50):31400–31406

    Article  PubMed  Google Scholar 

  • Dehvari N, Isacsson O, Winblad B, Cedazo-Minguez A, Cowburn RF (2008) Presenilin regulates extracellular regulated kinase (ERK) activity by a protein kinase C alpha dependent mechanism. Neurosci Lett 436(1):77–80

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE (2000) Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Mol Endocrinol 14(10):1557–1569

    CAS  PubMed  Google Scholar 

  • Feng CQ, Ma WL, Song YB, Guo QY, Wu QH, Zheng WL (2002) Detection of cell apoptosis by MTT assay. Di Yi Jun Yi Da Xue Xue Bao 22(3):262–263

    CAS  PubMed  Google Scholar 

  • Franke TF, Cantley LC (1997) Apoptosis. A bad kinase makes good. Nature 390(6656):116–117

    Article  CAS  PubMed  Google Scholar 

  • Frasca G, Carbonaro V, Merlo S, Copani A, Sortino MA (2008) Integrins mediate beta-amyloid-induced cell-cycle activation and neuronal death. J Neurosci Res 86(2):350–355

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi R, Dargahi L, Haeri A, Moosavi M, Mohamed Z, Ahmadiani A (2013a) Brain insulin dysregulation: implication for neurological and neuropsychiatric disorders. Mol Neurobiol 47(3):1045–1065

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A (2013b) Insulin in the brain: sources, localization and functions. Mol Neurobiol 47(1):145–171

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi R, Zarifkar A, Rastegar K, Maghsoudi N, Moosavi M (2014) Insulin protects against Abeta-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption. Neuropharmacology 85C:113–120

    Article  Google Scholar 

  • Havrankova J, Roth J, Brownstein M (1978a) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272(5656):827–829

    Article  CAS  PubMed  Google Scholar 

  • Havrankova J, Schmechel D, Roth J, Brownstein M (1978b) Identification of insulin in rat brain. Proc Natl Acad Sci U S A 75(11):5737–5741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hill J, Lesniak M, Pert C, Roth J (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17(4):1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Holscher C (2014) First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimers Dement 10(1 Suppl):S33–S37

    Article  PubMed  Google Scholar 

  • Ivins KJ, Thornton PL, Rohn TT, Cotman CW (1999) Neuronal apoptosis induced by beta-amyloid is mediated by caspase-8. Neurobiol Dis 6(5):440–449

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Ren G, Jia N, Wang Y, Zhang H, Zhang W, Chen B, Cao Y (2013) Effects of nicorandil in neuroprotective activation of PI3K/AKT pathways in a cellular model of Alzheimer’s disease. Eur Neurol 70(3–4):233–241

  • Lee ER, Kim JY, Kang YJ, Ahn JY, Kim JH, Kim BW, Choi HY, Jeong MY, Cho SG (2006) Interplay between PI3K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochim Biophys Acta 1763(9):958–968

  • Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A 90(17):7951–7955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nassif M, Hoppe J, Santin K, Frozza R, Zamin LL, Simao F, Horn AP, Salbego C (2007) Beta-amyloid peptide toxicity in organotypic hippocampal slice culture involves Akt/PKB, GSK-3beta, and PTEN. Neurochem Int 50(1):229–235

  • Parihar MS, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11(5):456–467

    Article  CAS  PubMed  Google Scholar 

  • Paz K, Liu YF, Shorer H, Hemi R, LeRoith D, Quan M, Kanety H, Seger R, Zick Y (1999) Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem 274(40):28816–28822

  • Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104

    Article  CAS  PubMed  Google Scholar 

  • Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF (2004) Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuroreport 15(6):955–959

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2012a) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66(2):105–143

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2012b) MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem Biophys Res Commun 417(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW (2002) Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J Neurosci 22(9):3376–3385

    CAS  PubMed  Google Scholar 

  • Schulingkamp R, Pagano T, Hung D, Raffa R (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24(8):855–872

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam S, Unsicker K (2010) ERK and cell death: ERK1/2 in neuronal death. FEBS J 277(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Tanti JF, Jager J (2009) Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 9(6):753–762

    Article  CAS  PubMed  Google Scholar 

  • Theberge JF, Mehdi MZ, Pandey SK, Srivastava AK (2003) Prolongation of insulin-induced activation of mitogen-activated protein kinases ERK 1/2 and phosphatidylinositol 3-kinase by vanadyl sulfate, a protein tyrosine phosphatase inhibitor. Arch Biochem Biophys 420(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282(46):33305–33312

    Article  CAS  PubMed  Google Scholar 

  • van Houten M, Posner BI, Kopriwa BM (1980) Insulin binding sites localized to nerve terminals in rat median eminence and arcuate nucleus. Science 207(4435):1081

    Article  PubMed  Google Scholar 

  • Watson K, Fan GH (2005) Macrophage inflammatory protein 2 inhibits beta-amyloid peptide (1–42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol Pharmacol 67(3):757–765

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Wang HG (2001) The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20(53):7779–7786

    Article  CAS  PubMed  Google Scholar 

  • Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177(1–2):125–134

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the ‘two hit’ hypothesis. Mech Ageing Dev 123(1):39–46

Download references

Acknowledgments

This work was derived from the thesis of Rasoul Ghasemi and supported by a grant (no. 90–5783) from Shiraz University of Medical Sciences, Shiraz, Iran.

Conflict of Interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Moosavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, R., Moosavi, M., Zarifkar, A. et al. The Interplay of Akt and ERK in Aβ Toxicity and Insulin-Mediated Protection in Primary Hippocampal Cell Culture. J Mol Neurosci 57, 325–334 (2015). https://doi.org/10.1007/s12031-015-0622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0622-6

Keyword

Navigation